Math, asked by vidyasingh5804, 19 days ago

- In a maths class, the teacher draws two circles that touch each other externally at point K with centres A and B and radii 5cm and 4cm respectively, as shown in the figure....
Based on the above information answer the following...


1. the value of PA
1. 12cm
2. 5cm
3. 13cm
4. can't be determined


2. the value of BQ...
1. 4cm
2. 5cm
3. 6cm
4. none of these

3. the value of PK...
1. 13cm
2. 15cm
3. 16cm
4. 18cm

4. the value of QY...
1. 2cm
2. 5cm
3. 1cm
4. 3cm


Attachments:

Answers

Answered by Zuzu20
4

Answer:

1-c,2-b,3-d,4-c

Step-by-step explanation:

Used pythogoras to solve these because tangent point join the center at 90°

Answered by sarahssynergy
11

Given figure answer the following questions

Explanation:

  1. PS is a tangent to the circle with center A (radius r_1=5\ cm)
  2. hence, PS makes an angle of 90° with the radius AS. Then in ΔAPS,                              PS=12\ cm \ \ \ \ \ and\ \ \ \ \ AS=r_1=5\ cm \\PA^2= PS^2+AS^2 \\PA=\sqrt{12^2+5^2} \\PA= 13\ cm-> Q.1 has answer option (3)
  3. TQ is tangent to the circle with center B (radius r_2=4\ cm)          
  4. hence, TQ makes an angle of 90° with radius BT. Then in ΔBQT,               TQ=3\ cm \ \ \ \ \ and\ \ \ \ \ BT=r_1=4\ cm \\BQ^2= TQ^2+BT^2 \\BQ=\sqrt{3^2+4^2} \\BQ=5 \ cm -> Q.2 has answer option (2)            
  5. from point 2. we have, PA=13\ cm and AK= r_1=5\ cm  hence we have,                                                                                     PK=PA+AK\\PK=18\ cm                                    -> Q.3 has answer option (4)    
  6. from point 4. we have BQ=5\ cm  and  BY=r_2=4\ cm hence we have,                                                                                                                              QY=BQ-BY\\QY=1\ cm                                    ->Q.4 has answer option (3)

   

Similar questions