in a new system of units energy, density and power are taken as fundamental units, then the dimensional formula of momentum will be
Answers
the dimesion of the fundamental units is
E is energy -------------> ML²T⁻²
d is density -------------> ML⁻³
P is power --------------> ML²T⁻³
G is grav constant ----> M⁻¹L³T⁻²
using the dimensional analysis we'll get
G = k • (E)^α • (d)^β • (P)^γ ................ k = constant
⇔ M⁻¹L³T⁻² = (ML²T⁻²)^α • (ML⁻³)^β • (ML²T⁻³)^γ
⇔ M⁻¹L³T⁻² = M^(α + β + γ) • L^(2α - 3β + 2γ) • T^(-2α - 3γ) .................(1)
based on the eqn (1) we get
α + β + γ = -1
2α - 3β + 2γ = 3
-2α - 3γ = -2
solve for α, β, and γ until you get value of
α = -2
β = -1
γ = 2
then, the dimensional formula of universal gravitational constant is
#nancy1D
G = k(E⁻² d⁻¹ P²) .
I hope this will help
Answer:
G = E⁻² D⁻¹ P²
Explanation:
E = [ M L² T⁻² ]
P = [ M L² T⁻³ ]
D = [ M L⁻³ T⁰ ]
G = Nm²/Kg² => [ M⁻¹ L³ T⁻² ]
G = Eᵃ Dᵇ Pˣ
Put values of E, D, P
G = [ M L² T⁻² ]ᵃ [ M L⁻³ ]ᵇ [ M L² T⁻³ ]ˣ
G = [ Mᵃ⁺ᵇ⁺ˣ L²ᵃ⁻³ᵇ⁺²ˣ T⁻²ᵃ⁻³ˣ ]
COMPARE
a + b + x = -1
2a - 3b + 2x = 3
-2a -3x = -2
a = -2
b = -1
x = 2
G = [ E⁻² D⁻¹ P² ]