Accountancy, asked by manishnagar35, 5 months ago

In a number, these are three digits whose sum is 9. The digit in the uni
place is two times the digit in the hundred place. If the digits e reversed,
the number is increased by 198, find the number.​

Answers

Answered by Sauron
19

Answer:

The original number is 234

Step-by-step explanation:

Let the numbers in original number be =

  • Hundreds digit = x
  • Units digit = 2x

As the sum of their digits is 9,

\longrightarrow x + 2x + Tens digit = 9

\longrightarrow 3x + Tens digit = 9

\longrightarrow Tens digit = 9 - 3x

Original number:

  • Hundreds digit = x
  • Tens digit = (9 - 3x)
  • Units digit = 2x

\longrightarrow 100(x) + 10(9 - 3x) + (2x)

\longrightarrow 100x + 90 - 30x + 2x

\longrightarrow 72x + 90 ----- (Original number)

Number with reversed digits:

  • Hundreds digit = 2x
  • Tens digit = (9 - 3x)
  • Units digit = x

\longrightarrow 100(2x) + 10(9 - 3x) + x

\longrightarrow 200x + 90 - 30x + x

\longrightarrow 171x + 90 ----- (Number with reversed digits)

According to the Question,

If the digits are reversed, the original number is increased by 198

\longrightarrow (72x + 90) + 198 = 171x + 90

\longrightarrow 72x + 288 = 171x + 90

\longrightarrow 72x - 171x = 90 - 288

\longrightarrow –99x = –198

\longrightarrow x = –198 ÷ –99

\longrightarrow x = 2

Original number =

\longrightarrow 72(2) + 90

\longrightarrow 144 + 90

\longrightarrow 234

Therefore, the original number is 234.

Similar questions