Math, asked by khushwantmall861, 1 month ago

In A.P Tp = 1 by q and Tq = 1 by p then a-d =

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Tʜᴜs,

According to statement,

Given that,

\red{\rm :\longmapsto\:T_p = \dfrac{1}{q}}

\red{\rm :\longmapsto\:a + (p - 1)d = \dfrac{1}{q} -  -  - (1)}

Also, Given that

\red{\rm :\longmapsto\:T_q = \dfrac{1}{p}}

\red{\rm :\longmapsto\:a + (q - 1)d = \dfrac{1}{p} -  -  - (2)}

On Subtracting equation (2) from equation (1), we get

\rm :\longmapsto\:(p - 1)d - (q - 1)d = \dfrac{1}{q}  - \dfrac{1}{p}

\rm :\longmapsto\:pd - d - qd + d = \dfrac{p - q}{pq}

\rm :\longmapsto\:d(p  - q) = \dfrac{p - q}{pq}

\bf\implies \:d = \dfrac{1}{pq}  -  -  - (3)

On substituting the value of d, in equation (1), we get

\rm :\longmapsto\:a + (p - 1)\dfrac{1}{pq}  = \dfrac{1}{q}

\rm :\longmapsto\:a  + \dfrac{1}{q} -  \dfrac{1}{pq}  = \dfrac{1}{q}

\rm :\longmapsto\:a -  \dfrac{1}{pq}  = 0

\bf\implies \:\:a  =   \dfrac{1}{pq}

Hence,

\bf\implies \:\:a - d  =   \dfrac{1}{pq} - \dfrac{1}{pq}  = 0

Additional Information :-

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

Sₙ is the sum of n terms of AP.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Similar questions