Math, asked by kalyanigoud20, 1 year ago

in a parallel lines if the corresponding angles are (5x)° and (2x+12)° then the value of x​

Answers

Answered by Tajinder1354
24

Step-by-step explanation:

5x°=2x°+12°

5x°-2x°=12°

3x°=12°

x=12°/3°

x=4°

Answered by fatimahzohra6
3

Answer:

The value of x is 4°.

Step-by-step explanation:

  • According to Corresponding Angle Theorem , if two lines are parallel to each other and there is a transversal line to the Parallel lines, then the Corresponding Angles are equal.
  • In the above figure, line m and n are parallel to each other and t is the Transversal.
  • Then, 2 is corresponding to 6. Angle 2=Angle 6
  • 3 is corresponding to 7. Angle 3=Angle 7
  • 1 is corresponding to 5. Angle 1=Angle 5
  • 4 is corresponding to 8. Angle 4=Angle 8
  • In the given question, the Corresponding Angles are (5x)° and (2x+12)°.
  • We know that Corresponding Angles are equal, so (5x)°=(2x+12)°
  • (5x)°-(2x)°=12° (bringing 2x° to the left hand side of the equation)
  • (3x)°=12°
  • x=12°/3
  • x=4°

The value of x is found to be .

Attachments:
Similar questions