In a parallelogram ABCD,
a. Angle C = (3x + 15°), Angle D = (2x + 10º), find the value of x.
b. Angle A = 5y, Angle B = 3y + 20°, find the value of y.
Answers
Answered by
1
Answer:
Angle a = Angle c ( opposite angles of a parallelogram are equal )
Similarly Angle b = Angle d ( opposite angles of a parallelogram are equal )
5y = 3x + 15° and 3y + 20 ° = 2x + 10 °
2x+10=3x+15
10-15=3x-2x
-5=x
X=-5
5y=3y+20°
5y-3y=20°
2y=20°
y=20°/2
y=10°
Answered by
2
Answer:
a)AD//BC
So angleC+angle D =180°
(co interior angles. )
3x+15°+2x+10°=180°
5x=155°
x=31°
b)AB//BD
So angle A+Angle B=180°
(co interior angles. )
5y+3y+20°=180°
8y=160°
y=20°
Attachments:
Similar questions