Math, asked by sandeep9283, 11 months ago

in a parallelogram ABCD AB=13cm BC=14 AC=15 then aera of parallelogram. option (A) 54 cm square (B) 42 cm square (C) 168 cm square (D) 126 cm square​

Answers

Answered by Anonymous
113

AnswEr :

⋆ Reference of Image is in the Attachment :

we will find the Area of Triangle ABC :

we will use Heron's Formula to find the Area.

⇒ s = \sf\dfrac{a+b+c}{2}

⇒ s = \sf\dfrac{13+14+15}{2}

⇒ s = \sf\dfrac{42}{2}

s = 21

 \boxed{ \sf Area =  \sqrt{s(s - a)(s - b)(s - c)} }

\rightarrow\sf Area_{\tiny\triangle ABC }= \sqrt{s(s - a)(s - b)(s - c)}

\rightarrow\sf Area_{\tiny\triangle ABC }= \sqrt{21(21 - 13)(21 - 14)(21 - 15)}

\rightarrow\sf Area_{\tiny\triangle ABC }= \sqrt{21 \times8 \times 7 \times 6}

\rightarrow\sf Area_{\tiny\triangle ABC}= \sqrt{7 \times 3 \times2 \times 2 \times 2\times 7 \times 2 \times 3}

\rightarrow\sf Area_{\tiny\triangle ABC}=7 \times 3 \times 2 \times 2

\rightarrow \boxed{\sf Area_{\tiny\triangle ABC}=84 \: {cm}^{2}}

_________________________________

we know that the diagonal of Parallelogram divides in two congruent triangles :

Ar. of ΔADC = Ar. of ΔABC = 84 cm²

we will calculate Area of Parallelogram :

⇝ Area of || ABCD = 2 × Area of ∆ABC

⇝ Area of || ABCD = 2 × 84 cm²

Area of || ABCD = 168 cm²

Area of Parallelogram is [ C.] 168 cm²

Attachments:
Answered by RvChaudharY50
20

Given :-----

  • ABCD is a llgm .
  • AB = 13cm
  • BC = 14cm
  • AC = 15cm

To Find :------

  • Area of llgm ..

Formula used :----

  • Since AC is diagonal of llgm .
  • Area of ∆ABC = √s(s-a)(s-b)(s-c) by heron's formula , where s = semi-perimeter and a,b and c are sides of ∆ .
  • area of llgm = 2×Area of ∆ABC (As diagonals of llgm divides it into two equal areas)

Calculation :----

Semi-Perimeter of ∆ ABC = (13+14+15)/2 = 42/2 = 21cm

Now, putting all values in Heron's Formula we get,,

Area \:  of \:  \triangle \: ABC = \:  \sqrt{21 \times (21 - 13)(21 - 14)(21 - 15)}  \\  \\ Area\:  \triangle \: ABC = \sqrt{21 \times 8 \times 7 \times 6}  \\  \\ Area\:  \triangle \: ABC = \sqrt{3 \times 7 \times 2 \times 4 \times 7 \times 2 \times 3}  \\  \\ Area\:  \triangle \: ABC =  3 \times 7 \times 2 \times 2 \\  \\ Area\:  \triangle \: ABC = 84 \:  {cm}^{2}

Hence, Area of llgm = 2×84 = 168cm² (C)

(Hope it Helps you)

____________________________________

Extra Brainly knowledge :-------

1) Opposite sides are parallel.

2) Opposite sides are congruent.

3) Opposite angles are congruent.

4) Consecutive angles are supplementary.

5) The diagonals bisect each other.

Similar questions