in a parallelogram ABCD , angle A = ( 3x -20)° , angle B = ( y+15)°, Angle C =(x+40)° , find values of x And y
plz reply
plz don't just write the answer show the process with the reasons
Answers
Answered by
1
i hope you understand
can you please mark me as brainlist
keep smiling
Attachments:
Answered by
1
Step-by-step explanation:
Given : In a parallelogram ABCD, if ∠A = (3x - 20)°, ∠B = (y + 15)° and ∠C = (x + 40)°.
We have , parallelogram ABCD,
In parallelogram Opposite Angles are equal
∴ ∠ A = ∠ C
→ (3x - 20)° = (x + 40)°
→ 3x - x = 40° + 20°
→ 2x = 60°
→ x = 60°/2
→ x = 30° …………(1)
Since, Sum of Consecutive interior angles are supplementary, Then
∠A + ∠B = 180°
→ 3x – 20° + y + 15 = 180°
→ 3x + y = 180° + 20° - 15°
→ 3x + y = 180° + 5°
→ 3x + y = 185°
→ 3 × 30° + y = 185°
[From eq 1]
→ 90° + y = 185°
→ y = 185° – 90°
→ y = 95°
Hence , the values of x is 30° and y is 95°.
Similar questions