Math, asked by rchowbey37, 4 months ago

in a parallelogram ABCD , angle A = ( 3x -20)° , angle B = ( y+15)°, Angle C =(x+40)° , find values of x And y
plz reply
plz don't just write the answer show the process with the reasons ​

Answers

Answered by harshini2860
1

i hope you understand

can you please mark me as brainlist

keep smiling

Attachments:
Answered by Salmonpanna2022
1

Step-by-step explanation:

Given : In a parallelogram ABCD, if ∠A = (3x - 20)°, ∠B = (y + 15)° and ∠C = (x + 40)°.

 

We have , parallelogram ABCD,

In parallelogram Opposite Angles are equal

∴ ∠ A = ∠ C

→ (3x - 20)° = (x + 40)°

→ 3x - x = 40° + 20°

→ 2x = 60°

→ x = 60°/2

→ x = 30° …………(1)

 

Since, Sum of Consecutive interior angles are supplementary, Then  

∠A + ∠B = 180°

→ 3x – 20° + y + 15 = 180°

→ 3x + y = 180° +  20° - 15°

→ 3x + y = 180° + 5°

→ 3x + y = 185°

→ 3 × 30° + y = 185°

[From eq 1]

→ 90° + y = 185°

→ y = 185° – 90°  

→ y = 95°

Hence , the values of x is 30° and y is 95°.

Similar questions