Math, asked by SureshChiplunkar, 3 months ago

In a Parallelogram ABCD , angle D = 115° , determine the measure of Angle A and Angle B​

Answers

Answered by Anonymous
4

Answer:

Since the sum of any two consecutive angles of a parallelogram is 180°

Therefore,

∠A+∠D=180°

and ∠A+∠B=180°

Now, ∠A+∠D=180°

∠A+115° =180°

∠A=65°

and, ∠A+∠B=180°

65°+∠B=180

∠B=115°

Thus, ∠A=65°and ∠B=115°.

Explanation:

#HopeItHelps

Answered by thebrainlykapil
141

\large\underline{ \underline{ \sf \maltese{ \: Question:- }}}

  • In a Parallelogram ABCD , angle D = 115° , determine the measure of Angle A and Angle B

 \\

\large\underline{ \underline{ \sf \maltese{ \: Diagram :- }}}

\setlength{\unitlength}{1 cm}\begin{picture}(0,0)\thicklines\qbezier(1,1)(1,1)(6,1)\put(0.4,0.5){\bf D}\qbezier(1,1)(1,1)(1.6,4)\put(6.2,0.5){\bf C}\qbezier(1.6,4)(1.6,4)(6.6,4)\put(1,4){\bf A}\qbezier(6,1)(6,1)(6.6,4)\put(6.9,3.8){\bf B}\end{picture}

━━━━━━━━━━━━━━━━━━━━━━━━━

 \\

\large\underline{ \underline{ \sf \maltese\red{ \:Basic \: Concept :- }}}

  • The Sum of any Two Consecutive Angles of a Parallelogram is 180°

\bf\angle \: A \: + \: \angle \: D \: = \: 180°

\bf\angle \: A \: + \: \angle \: B \: = \: 180°

━━━━━━━━━━━━━━━━━━━━━━━━━

 \\  \\

\large\underline{ \underline{ \sf \maltese\green{ \: Solution:- }}}

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\: \angle \: A \: + \: \angle \: D \: = \: 180°  }} }\\ \\\end{gathered}\end{gathered}\end{gathered}

\bf\: \angle \: D \: = \: 180°( \: given \: )

\qquad \quad {:} \longrightarrow \sf{\sf{ \angle \: A \: + \: \angle \: D \: = \: 180}}\\

\qquad \quad {:} \longrightarrow \sf{\sf{ \angle \: A \: + \: 115 \: = \: 180 }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{ \angle \: A \: = \: 180\: - \: 115 }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{ \angle \: A \: = \: 65° }}\\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{\angle\:  A \: = \: 65° }}}

━━━━━━━━━━━━━━━━━━━━━━━━━

 \\  \\

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\: \angle \: A \: + \: \angle \: B\: = \: 180°  }} }\\ \\\end{gathered}\end{gathered}\end{gathered}

\qquad \quad {:} \longrightarrow \sf{\sf{ \angle \: A \: + \: \angle \: B\: = \: 180}}\\

\qquad \quad {:} \longrightarrow \sf{\sf{ 65\: + \: \angle \: B\: = \: 180 }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{ \angle \: B \: = \: 180\: - \: 65 }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{ \angle \: B \: = \: 115° }}\\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{\angle\:  B \: = \: 65° }}}

━━━━━━━━━━━━━━━━━━━━━━━━━

 \\

\large\underline{ \underline{ \sf \maltese\green{ \: Verification:- }}}

\qquad \quad {:} \longrightarrow \sf{\sf{ \angle \: A \: + \: \angle \: B\: = \: 180}}\\

\qquad \quad {:} \longrightarrow \sf{\sf{ 65 \: + \: 115 \: = \: 180}}\\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{180° \: = \: 180° }}}

━━━━━━━━━━━━━━━━━━━━━━━━━

 \quad \qquad\bf \therefore \;   \angle \;A  = 65°

 \quad \qquad\bf \therefore \;   \angle \;B  = 115°

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions