Math, asked by moizalam569, 5 days ago

in a parallelogram ABCD, E and F are the midpoints of AB and BC respectively show that BD bisects EF.

there is no diagram
please solve it on page ​

Answers

Answered by girlherecrazy
5

ABCD is ∥gm

AB∥CD

AE∥FC

⇒AB=CD

    21AB=21CD

    AE=EC

AECF is ∥gm

In △DQC

F is mid point of DC 

FP∥CQ

By converse of mid point theorem P is mid point of DQ

⇒DP=PQ     (1)

∴AF and EC bisect BD

In △APB

E is mid point of AB

EQ∥AP

By converse of MPT ( mid point theorem )

Q is mid point of PB

⇒PQ=QB   (2)

By (1) and (2)

⇒PQ=QB=DP

AF and EC bisect BD..

Step-by-step explanation:

CRAZY GIRL

Similar questions