In a parallelogram ABCD, if ∠A = (3x + 12)˚, ∠B = (2x – 32)˚. Find x,
m∠ C, m∠D
Answers
..Question.. ㅤ
In a parallelogram ABCD
if ∠A = (3x + 12)˚
∠B = (2x – 32)˚.
Find x and ∠ C and ∠D
..Answer..
Given here ,
ㅤㅤㅤㅤㅤㅤ➪ ∠ A = ( 3x + 12 )⁰
ㅤㅤㅤㅤㅤㅤ➪ ∠ B = ( 2x - 32 )⁰
☯︎ We are to find ' x '
°•° We know that ,
ㅤㅤ➪ ∠ A + ∠ B = 180⁰
[ sum of adjacent angles is 180⁰ ]
ㅤㅤ➪ ( 3x + 12 )⁰ + ( 2x - 32 )⁰ = 180⁰
ㅤㅤ➪ 3x + 12 + 2x - 32 = 180
ㅤㅤ➪ 3x + 2x + 12 - 32 = 180
ㅤㅤ➪ 5x - 20 = 180
ㅤㅤ➪ 5x = 180 + 20
ㅤㅤ➪ x = 200/5
ㅤㅤ➪ x = 40
•°• ∠ A = ( 3x + 12 )⁰
ㅤ ㅤ ㅤ= ( 3 × 40 + 12 )⁰
ㅤㅤㅤ = ( 120 + 12 )⁰
ㅤㅤㅤ = 132⁰
ㅤ ∠ B = ( 2x - 32 )⁰
ㅤㅤ ㅤ= ( 2 × 40 - 32 )⁰
ㅤㅤㅤ = ( 80 - 32 )⁰
ㅤㅤㅤ = 48⁰
Also we have to find , ∠ C and ∠ D
°•° In a parallelogram , opposite sides and angles are equal.
•°• ∠ A = ∠ C
ㅤㅤㅤ➪ 132⁰ = ∠ C
ㅤㅤㅤ➪ ∠C = 132⁰
also ,
ㅤㅤㅤ➪ ∠ B = ∠ D
ㅤㅤㅤ➪ 48⁰ = ∠ D
ㅤㅤㅤ➪ ∠ D = 48⁰
____________________
Give a look here ,
- angle sum property of triangle = 180⁰
- angle sum property of quadrilateral = 360⁰
- sum of 2 adjacent angles = 180⁰
- Linear pair = 180⁰
ㅤㅤㅤㅤ ꧁ ʙʀᴀɪɴʟʏ×ᴋɪᴋɪ ꧂
ㅤ