Math, asked by pomrmarak2183, 9 months ago

In a parallelogram ABCD, if ∠A=(3x-20)°, ∠B = (y+15)° and ∠C = (x+40)°, then find the values of x and y.

Answers

Answered by sprao53413
7

Answer:

Please

see the attachment

Attachments:
Answered by nikitasingh79
6

Given : In a parallelogram ABCD, if ∠A = (3x - 20)°, ∠B = (y + 15)° and ∠C = (x + 40)°.

 

We have , parallelogram ABCD,

In parallelogram Opposite Angles are equal

∴ ∠ A = ∠ C

⇒ (3x - 20)° = (x + 40)°

⇒ 3x - x = 40° + 20°

⇒ 2x = 60°

⇒ x = 60°/2

⇒ x = 30° …………(1)

 

Since, Sum of Consecutive interior angles are supplementary, Then  

∠A + ∠B = 180°

⇒ 3x – 20° + y + 15 = 180°

⇒ 3x + y = 180° +  20° - 15°

⇒ 3x + y = 180° + 5°

⇒ 3x + y = 185°

⇒ 3 × 30° + y = 185°

[From eq 1]

⇒ 90° + y = 185°

⇒ y = 185° – 90°  

⇒ y = 95°

Hence , the values of x is 30° and y is 95°.

HOPE THIS ANSWER WILL HELP YOU…..

 

Similar questions :

In a parallelogram ABCD, if ∠B=135°, determine the measures of its other angles.

https://brainly.in/question/15909369

 

In a parallelogram ABCD, if ∠D=115°, then write the measure of ∠A.

https://brainly.in/question/15909396

Similar questions