In a parallelogram ABCD, if ∠A=(3x-20)°, ∠B = (y+15)° and ∠C = (x+40)°, then find the values of x and y.
Answers
Answered by
7
Answer:
Please
see the attachment
Attachments:
Answered by
6
Given : In a parallelogram ABCD, if ∠A = (3x - 20)°, ∠B = (y + 15)° and ∠C = (x + 40)°.
We have , parallelogram ABCD,
In parallelogram Opposite Angles are equal
∴ ∠ A = ∠ C
⇒ (3x - 20)° = (x + 40)°
⇒ 3x - x = 40° + 20°
⇒ 2x = 60°
⇒ x = 60°/2
⇒ x = 30° …………(1)
Since, Sum of Consecutive interior angles are supplementary, Then
∠A + ∠B = 180°
⇒ 3x – 20° + y + 15 = 180°
⇒ 3x + y = 180° + 20° - 15°
⇒ 3x + y = 180° + 5°
⇒ 3x + y = 185°
⇒ 3 × 30° + y = 185°
[From eq 1]
⇒ 90° + y = 185°
⇒ y = 185° – 90°
⇒ y = 95°
Hence , the values of x is 30° and y is 95°.
HOPE THIS ANSWER WILL HELP YOU…..
Similar questions :
In a parallelogram ABCD, if ∠B=135°, determine the measures of its other angles.
https://brainly.in/question/15909369
In a parallelogram ABCD, if ∠D=115°, then write the measure of ∠A.
https://brainly.in/question/15909396
Similar questions