In a parallelogram ABCD, if angle A = (2x+15)°, angle B = (4x-27)° then find the value of x and the measure of angle C and angle D
Answers
Answer:
: In a parallelogram ∠A =(2x + 35), ∠C= (3x - 5)
To find : Value of x, m∠A , m∠B , m∠C, m∠D=?
Solution:
Quadrilateral ABCD is A parallelogram.
∴∠A=∠C .........Opposite angles of parallelogram
∴ 2x + 35 = 3x - 5
∴ 35 + 5 = 3x - 2x
∴ 40 = x
∴ x = 40
∴∠A = ∠C = 2x + 35
= 2 x 40 +35
= 80 + 35
∴ ∠A= ∠C = 115°
Adjacent angles of parallelogram are Supplementary
∴ ∠A + ∠B = 180°
∴ 115 + ∠B = 180
∴ ∠B = 180 - 115
∴ ∠B = 65°
∠B = ∠D = 65°.......Opposite angles of parallelogram.
∴ X = 40
∴m∠A = m∠C = 115°
∴m∠B = m∠D = 65°
Answer:
Step-by-step explanation
we know adjacent angles of parallelogram are suplementry angles.
angle A+angle B=180
2x+15+4x-27=180
6x-78=180
6x=180-78
6x=102
x=102/6
x=17
2x+15=49(angle A)
4x-27=41(angle B)
sum of all angles of a parallelogram is 360°
Let C and D be x
A+B+C+D=360°
49+41+x+x=360°
2x+90=360°
2x=360-90
2x=270
x=270/2
x=135
49+41+135+135=360°
Hope this help