Math, asked by Mohitmanisha, 11 months ago

In a parallelogram ABCD, mark two points E and F on the diagonal AC on either side of O ( the point of intersection of the diagonal AC and BD) such that AE=CF. prove that BEDF is a parallelogram

Answers

Answered by nandikapatel18
3

Answer:

pls mark me the brainliest

Step-by-step explanation:

In parallelogram ABCD:

AO = OC…………….. (i) (Diagonals of a parallelogram bisect each other)

AE = CF…….. (ii) Given

On subtracting (ii) from (i)

AO – AE = OC – CF

EO = OF ….. (iii)

In ΔDOE and ΔBOF

EO = OF (proved)

DO = OB (Diagonals of a parallelogram bisect each other)

∠DOE = ∠BOF (vertically opposite angles are equal in a parallelogram)

By the rule of SAS congruence ΔDOE ≅ ΔBOF

So, DE = BF (Corresponding parts of congruent triangles)

In ΔBOE and ΔDOF

EO = OF (proved)

DO = OB (diagonals of a parallelogram bisect each other)

∠DOF = ∠BOE (vertically opposite angles are equal in a parallelogram)

By the rule of SAS congruence ΔDOE ≅ ΔBOF

∴ DF = BE (Corresponding parts of congruent triangles)

∴ BFDE is a parallelogram, since one pair of opposite sides are equal and parallel.

Similar questions