In a parallelogram ABCD, the bisector of angle A also bisects BC at x. Prove that AD=2AB
Answers
Answered by
24
In parallelogram ABCD ,
Bisector of ∠A bisects BC at X
∵ AD││BC and AX cuts them so
∠DAX = ∠AXB (alternate angles)
∠DAX = ∠XAB (AX is bisector of ∠A)
∴∠AXB = ∠XAB
AB= BX (sides opposite of equal angles)
Now,AB/AD= BX/BC
=AB/AD=BX/2BX
(since,X is mid point of BC)
=AB/AD=1/2
= AD = 2AB
Similar questions