English, asked by jotirmoyeebalomohar, 2 months ago

In a parallelogram altitude is twice its corresponding base. If the area of the parallelogram is 450 sq cm, find its base.​

Answers

Answered by SachinGupta01
6

\bf \underline{ \underline{\maltese\:Given} }

In a parallelogram altitude is twice its corresponding base.

Area of the parallelogram = 450 cm²

\bf \underline{ \underline{\maltese \: To \:  find } }

 \sf \implies  Base \:  of  \: the \:  parallelogram =  \: ?

\bf \underline{ \underline{\maltese \: Solution } }

 \sf Let \:  us  \: assume  \: that,

 \sf  \implies Base \:  of  \: the \:  parallelogram \:  be \:  x

 \sf \implies \bf Then, \sf  \: the \:  altitude \:  will \:  be \:  (2x )

 \sf We \:  know \:  that,

 \underline{ \boxed{ \sf Area  \: of  \: parallelogram = Base \times Altitude}}

 \sf Substitute \:  the  \: values,

 \sf Area  \: of  \: parallelogram = (x) \times (2x)

 \implies \sf 450 = 2x^{2}

 \implies \sf x^{2}   =  \dfrac{450}{2}

 \implies \sf x^{2}   =  225

 \implies \sf x =   \sqrt{225}

 \implies \sf x = 15

 \bf \underline{ Now},

 \sf \implies{  \underline{\boxed{ \sf The \:  base  \: of \:  the \:  parallelogram  \: (x) = \bf 15 \: cm}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━

\bf \underline{ \underline{\maltese \: Varification  } }

To verify the answer just write 15 in place of x.

 \sf Area  \: of  \: parallelogram = (x) \times (2x)

 \sf  \implies450 = (x) \times (2x)

 \sf  \implies450 = (15) \times (2 \times 15)

 \sf  \implies450 = 15 \times 30

 \sf  \implies450 = 450

LHS and RHS are equal.

\bold{\longrightarrow}\:\large{\tt \red{Hence\:Verified\:!}}

Similar questions