in a parallelogram pqrs A and B are midpoints of PQ and Rs respectively show that line segment PB and are transacted diagonals QS
Answers
Answered by
0
ABCD is ∥gm
AB∥CD
AE∥FC
⇒AB=CD
21 AB= 21CD
AE=EC
AECF is ∥gm
In △DQC
F is mid point of DC
FP∥CQ
By converse of mid point theorem P is mid point of DQ
⇒DP=PQ (1)
∴AF and EC bisect BD
In △APB
E is mid point of AB
EQ∥AP
By converse of MPT ( mid point theorem )
Q is mid point of PB
⇒PQ=QB (2)
By (1) and (2)
⇒PQ=QB=DP
SO, PB TRANSACTED QS
Similar questions