Math, asked by missmona01, 1 month ago

in a parallelogram pqrs ∠p = (3a-10°) ∠q(5a+30°) find the all angles of the parallelogram.

❌❌✖don't spam✖❌❌. either i will rpt.. ok​

Answers

Answered by CopyThat
34

Step-by-step explanation:

Given:

In a parallelogram PQRS:

∠p = (3a - 10)°

∠q = (5a + 30)°

To find:

All the angles of the parallelogram.

Solution:

In a parallelogram,

  • Adjacent angles are supplementary.

Therefore,

  • ∠p + ∠q = 180°

⇒ (3a - 10)° + (5a + 30)° = 180°

⇒ 3a - 10° + 5a + 30° = 180

⇒ 8a + 20° = 180°

⇒ 8a = 160°

∴ a = 20°

Measures of angles:

∠p [3a - 10]° = 60° - 10° = 50°

∠q [5a + 30°] = 100° + 30° = 130°

We know,

  • Opposite angles are equal in a parallelogram.

∠p = ∠r = 50°

∠q = ∠s = 130°

Measure of all the angles:

  • ∠p = 50°, ∠q = 130°, ∠r = 50°, ∠s = 130°.

Verification:

  • Sum of all the angles in a quadrilateral is equal to 360°.

∠p + ∠q + ∠r + ∠s = 360°

⇒ 50° + 130° + 50° + 130° = 360°

⇒ 260° + 100° = 360°

⇒ 360° = 360°

∴ L.H.S = R.H.S

Alternate method:

We know,

  • Sum of all the angles in a parallelogram is equal to 360°.

We have,

  • ∠p = (3a - 10)°
  • ∠q = (5a + 30)°

We know,

  • Opposite angles in a parallelogram are equal.

∠p = ∠r

∠q = ∠s

Hence,

  • (3a - 10)° + (5a + 30)° + (3a - 10)° + (5a + 30)° = 360°

⇒ 3a - 10 + 5a + 30 + 3a - 10 + 5a + 30 = 360°

⇒ 16a - 20 + 60 = 360°

⇒ 16a + 40° = 360°

⇒ 16a = 320°

∴ a = 20°

Measures of angles:

∠p [3a - 10]° = 60° - 10° = 50°

∠q [5a + 30°] = 100° + 30° = 130°

∠r [3a - 10]° = 60° - 10° = 50°

∠q [5a + 30°] = 100° + 30° = 130°

Attachments:
Answered by 7esuryanshumohansing
2

Step-by-step explanation:

given :

in a parallelogram pqrs ∠p = (3a-10°) ∠q(5a+30°) find the all angles of the parallelogram.

to find :

find the all angles of the parallelogram.

solution :

  • P+q=180

  • 3a-10+5a+30=180

  • a=20

  • P =r=50

  • Q=s=130

Similar questions