in a parallelogram pqrs ∠p = (3a-10°) ∠q(5a+30°) find the all angles of the parallelogram.
❌❌✖don't spam✖❌❌. either i will rpt.. ok
Answers
Step-by-step explanation:
Given:
In a parallelogram PQRS:
∠p = (3a - 10)°
∠q = (5a + 30)°
To find:
All the angles of the parallelogram.
Solution:
In a parallelogram,
- Adjacent angles are supplementary.
Therefore,
- ∠p + ∠q = 180°
⇒ (3a - 10)° + (5a + 30)° = 180°
⇒ 3a - 10° + 5a + 30° = 180
⇒ 8a + 20° = 180°
⇒ 8a = 160°
∴ a = 20°
Measures of angles:
∠p [3a - 10]° = 60° - 10° = 50°
∠q [5a + 30°] = 100° + 30° = 130°
We know,
- Opposite angles are equal in a parallelogram.
∠p = ∠r = 50°
∠q = ∠s = 130°
Measure of all the angles:
- ∠p = 50°, ∠q = 130°, ∠r = 50°, ∠s = 130°.
Verification:
- Sum of all the angles in a quadrilateral is equal to 360°.
∠p + ∠q + ∠r + ∠s = 360°
⇒ 50° + 130° + 50° + 130° = 360°
⇒ 260° + 100° = 360°
⇒ 360° = 360°
∴ L.H.S = R.H.S
Alternate method:
We know,
- Sum of all the angles in a parallelogram is equal to 360°.
We have,
- ∠p = (3a - 10)°
- ∠q = (5a + 30)°
We know,
- Opposite angles in a parallelogram are equal.
∠p = ∠r
∠q = ∠s
Hence,
- (3a - 10)° + (5a + 30)° + (3a - 10)° + (5a + 30)° = 360°
⇒ 3a - 10 + 5a + 30 + 3a - 10 + 5a + 30 = 360°
⇒ 16a - 20 + 60 = 360°
⇒ 16a + 40° = 360°
⇒ 16a = 320°
∴ a = 20°
Measures of angles:
∠p [3a - 10]° = 60° - 10° = 50°
∠q [5a + 30°] = 100° + 30° = 130°
∠r [3a - 10]° = 60° - 10° = 50°
∠q [5a + 30°] = 100° + 30° = 130°
Step-by-step explanation:
given :
in a parallelogram pqrs ∠p = (3a-10°) ∠q(5a+30°) find the all angles of the parallelogram.
to find :
find the all angles of the parallelogram.
solution :
- P+q=180
- 3a-10+5a+30=180
- a=20
- P =r=50
- Q=s=130