Math, asked by saurabh9189, 11 months ago

In a parallelogram PQRS, the

bisectors of ∠P and ∠Q meet at
O. Find ∠POQ.​

Answers

Answered by rajsingh24
46

QUESTION :-

\sf\red{In \:a \:parallelogram\: PQRS, the\: bisectors \:of \:}

\sf\green{∠P \:and \:∠Q \:meet \:at \:O \:Find \:∠POQ.}

SOLUTION :-

\rightarrow \sf\pink{Since\: OP \:and \:OQ \:\:are \:the</p><p>\: bisectors}

\sf\orange{ \:of \:∠P\: and \:∠Q</p><p> \:respectively,\:}

\sf\pink{(see\: figure. ),}

\sf\red{So, \:∠OPQ = 1/2\: ∠P\: and \: ∠OQP = </p><p>1/2 \: ∠Q}

\sf\purple{ in \:triangle \:POQ}

\sf\green{=\:∠OPQ \:+ ∠PQO\: + \:∠POQ = 180°\:(Angle\: sum\: property)}

\sf\blue{=\: i.e \:1/2*∠P\:+ \:∠POQ\:+1/2*\:∠Q=180°}

\sf\red{ =\:i.e \: ∠POQ =180° -1/2(∠P+∠Q)}

\rightarrow \sf\purple{\:180° - 1/2 × 180°}

\rightarrow \sf\pink{90°}

\rightarrow \sf{\underline{\underline{\blue{\boxed{ ∠POQ\: is \:equal \:to \:90°.}}}}}

Attachments:
Similar questions