In a paralleogram ABCD , if angle A = (2x +35) and angle C = (3x - 5). Find - 1- the value of x . 2- meausre of each angle of ABCD.
Answers
In a llgm ABCD
Given:
<a=(2x+35)
<c=(3x-5)
To find i)Value of x
ii)Measure of each angle
i) 2x+35=3x-5 [In a llgm,Opposite angles are equal]
2x-3x=-5-30
-x=-40
x=40°
ii) <a=(2x+35)
2×40+35=115°
<A=<C=115° [Opposite angles are equal]
<A+<B=180° {sum of adjacent side}
115°+<B=180°
<B=180°-115°
<B=65°
<B=<C=65° [opposite angles are equal]
______________
Therefore;
value of x=40°
<A=<C (115°)
<B=<C (65°)
1)value of x
2)measure of each angle
Solution
In parallelogram ABCD
<a=(2x+35)....... (given)
<c=(3x-5)........(given)
1)value of x
2x+35=3x-5...........(opposite angles are similar)
2x-3x=-5-30
-x=-40
:x=40
2)measure of each angle
<a=2x+35
<A=<C=115........(opposite angles of parallelogram. are similar)
<A+<B=180........(adjacent sides of parallelogram)
115+<B=180
<B=180-115
<B=65
<B=<C=65.........(opposite angles of parallelogram)
:value of x=40