Math, asked by agrawalmona2305, 1 year ago

In a paralleogram ABCD , if angle A = (2x +35) and angle C = (3x - 5). Find - 1- the value of x . 2- meausre of each angle of ABCD.

Answers

Answered by SnowySecret72
38

In a llgm ABCD

Given:

<a=(2x+35)

<c=(3x-5)

To find i)Value of x

ii)Measure of each angle

{sol}^{n}

i) 2x+35=3x-5 [In a llgm,Opposite angles are equal]

2x-3x=-5-30

-x=-40

x=40°

ii) <a=(2x+35)

2×40+35=115°

<A=<C=115° [Opposite angles are equal]

<A+<B=180° {sum of adjacent side}

115°+<B=180°

<B=180°-115°

<B=65°

<B=<C=65° [opposite angles are equal]

______________

Therefore;

value of x=40°

<A=<C (115°)

<B=<C (65°)

Attachments:
Answered by Anonymous
2

\huge\star\mathfrak\red{{Answer:-}}

1)value of x

2)measure of each angle

Solution

In parallelogram ABCD

<a=(2x+35)....... (given)

<c=(3x-5)........(given)

1)value of x

2x+35=3x-5...........(opposite angles are similar)

2x-3x=-5-30

-x=-40

:x=40

2)measure of each angle

<a=2x+35

2 \times  40 + 35 = 115

<A=<C=115........(opposite angles of parallelogram. are similar)

<A+<B=180........(adjacent sides of parallelogram)

115+<B=180

<B=180-115

<B=65

<B=<C=65.........(opposite angles of parallelogram)

:value of x=40

<A=<C=115

<B=<D=65

\huge\star\mathfrak\pink{{Thanks:-}}

Similar questions