Math, asked by srijopriyo24, 16 days ago

in a parrarelogram abcd x and y are the middle points the sides ad and bc respectively if p be any point innxy prosuced prove the area of quadrilateral aecb is 2by 3 of the parrarelogram abcd​

Answers

Answered by SLAABYBGAMINGB
1

Step-by-step explanation:

X and Y are the mid-points of sides BC and CD.

In △BCD,

XY∥BD and XY=

2

1

BD {From the mid point theorem}

⇒ ar(△CYX)=

4

1

ar(△DBC) {property of triangle having mid points}

⇒ ar(△CYX)=

8

1

ar(∥

gm

ABCD) [ Area of parallelogram is twice the area of triangle made by diagona ] --- ( 1 )

Since, parallelogram ABCD and △ABX are between the same parallel lines AD and BC and BX=

2

1

BC.

⇒ ar(△ABX)=

4

1

ar(∥

gm

ABCD) ----- ( 2 )

Similarly, ar(△AYD)=

4

1

ar(∥

gm

ABCD) ----- ( 3 )

Now, ar(△AXY)=ar(∥

gm

ABCD)−[ar(△ABX)+ar(△AYD)+ar(△CYX)]

=ar(∥

gn

ABCD)−[

4

1

ar(∥

gm

ABCD+

4

1

ar(∥

gm

ABCD)+

8

1

ar(∥

gm

ABCD)] [ From ( 1 ) ( 2 ) and ( 3 ) ]

=ar(∥

gm

ABCD)−

8

5

(∥

gm

ABCD)

⇒ ar(△AXY)=

8

3

ar(∥

gm

ABCD)

∴ ar(∥

gm

ABCD)=

3

8

×ar(△AXY)

Similar questions