Math, asked by samuelray162, 7 months ago

in a period of 3 years,if RS 6250 earned compound interest of RS 1623.20,find the rate per annum. the answer will be 8% but some one tell me how​

Answers

Answered by VishnuPriya2801
43

Answer:-

Given:

Principle (P) = Rs. 6250

Compound interest (CI) = Rs. 1623.20

Time period (n) = 3 years.

Let the rate of interest be r.

We know that,

  \boxed{\sf CI \:  = P \bigg(1 +  \frac{r}{100}  \bigg) ^{n}  - P}

So,

 \implies \sf \: 1623.20 = 6250 \bigg(1 +  \frac{r}{100}  \bigg) ^{3} - 6250  \\  \\ \implies \sf \: 1623.20 + 6250 = 6250 \bigg(   \frac{100 + r}{100}  \bigg) ^{3}  \\  \\ \implies \sf \:7873.2 \times  \frac{1}{6250}  \times 100 \times 100 \times 100 =  {(100 + r)}^{3}  \\  \\ \implies \sf \:1259712 = (100 + r) ^{3} \\  \\  \implies \sf \:(108) ^{3}  =  {(100 + r)}^{3}

Powers are equal So bases are also equal.

 \: \implies \sf \:108 = 100 + r \\  \\ \implies \sf \:108 - 100 = r \\  \\ \:  \implies \boxed{ \sf \:r = 8 \: \%}

The rate of interest is 8 % per annum.

Answered by Anonymous
35

 \bf \huge {\underline {\underline \red{AnSwEr}}}

⠀⠀⠀

Given

⠀⠀⠀

  • n = 3 yrs
  • p = 6250
  • C.I = 1623.80

⠀⠀⠀

To Find

⠀⠀⠀

  • Rate per annum

⠀⠀⠀

Solution

⠀⠀⠀

Formula of CI

⠀⠀⠀

 \bf \pink {CI = p( {(1 +  \frac{r}{100} )}^{n}  - 1)}

⠀⠀⠀

Answer

⠀⠀⠀

 \bf \implies 1623.20 = 6250((1 +  \frac{r}{100} ) {}^{3}  - 1)

⠀⠀⠀

 \bf \implies 1623.20 = 6250(( \frac{100 + r }{100} ) {}^{3}  - 1)

⠀⠀⠀

 \bf \implies  \frac{1623.20}{6250}  =  {( \frac{100 + r}{100}) }^{3}  - 1

⠀⠀⠀

 \bf \implies  \frac{1623.20}{6250} + 1  =  {( \frac{100 + r}{100}) }^{3}

⠀⠀⠀

 \bf \implies   \frac{1623.20 + 6250}{6250}  = ( \frac{100 + r}{100} ) {}^{3}

⠀⠀⠀

 \bf \implies   \frac{7873.2}{6250}  =  {( \frac{100 + r}{100}) }^{3}

⠀⠀⠀

 \bf \implies   \sqrt[3]{ \frac{7873.2}{6250} }  =  \frac{100 + r}{100}

⠀⠀⠀

 \bf \implies   \frac{27}{25}  =  \frac{100 + r}{100}

⠀⠀⠀

 \bf \implies   \frac{27}{25}  \times 100 = 100 + r

⠀⠀⠀

 \bf \implies  27 \times 4 = 100 + r

⠀⠀⠀

 \bf \implies  100 + r = 27 \times 4

⠀⠀⠀

 \bf \implies  100 + r = 108

⠀⠀⠀

 \bf \implies  r = 108 - 100

⠀⠀⠀

 \bf \implies  r = 8  \%

⠀⠀⠀

Therefore, Rate is 8%.

Similar questions