Physics, asked by PriyankaRathore5439, 11 months ago

In a plane electromagnetic wave, the electric field oscillates sinusoidally at a frequency of 2.0xx10^10 H_z and amplitude 48V_m^-1 (a) What is the wavelength o f the wave? (b) What is the amplitude of the oscillating magnetic field. (c) Show that the average energy density of the field E equals the average energy density of the field B.[c=3xx10^8 ms^-1].

Answers

Answered by roshinik1219
0

Given:

Frequency (f)   =  2.0\times10^10_Hz

Amplitude(E_0)  = 48 V_m^{-1}

To find:

(a) Wave length of wave

(b) Amplitude of the oscillating magnetic field.

(c) Show that the average energy density of the field E equals the average energy density of the field B.

Solution:

(a) Wavelength is given by

                          \lambda = \frac{c}{f}

                                                               [ c=3\times 10^8m s^{-1}]

                        \lambda = \frac{3\times 10^8}{2\times 10^{10}}

                        \lambda = 1.5 \times 10^{-2} m

          Thus, wavelength is   \lambda = 1.5 \times 10^{-2} m

(b) Amplitude of the oscillating magnetic field(B_0) = \frac{E_0}{c}

                      B_0= \frac{48}{3\times10^8}

                     B_0 = 1.6\times 10^{-7}T

Thus, Amplitude of the oscillating magnetic field B_0 = 1.6\times 10^{-7}T

(c)  Average energy density of the electric field u_E=        \frac{1}{2} \epsilon_0E^2

                                                                                        E_{rms} = \frac{\epsilon_0}{\sqrt{2} }

So,                u_E= \frac{1}{4} \epsilon_0 (E_0)^2     ........(i)

Average energy density of the magnetic field

                          u_b= \frac{(B_0)^2}{4\mu_0}              ...........(ii)

Putting value of   (B_0) = \frac{E_0}{c}

                         u_b= \frac{(E_0)^2}{4\mu_0c^2}

                        u_b= \frac{(E_0)^2}{4\mu_0\frac{1}{\epsilon_0\mu_0} }  ......(ii)                                      c= \frac{1}{\sqrt{\epsilon_0\mu_0} }

After substituting the values from eq (i) and (ii)

we get,

                            u_b = u_E

Thus, The average energy density of the field E equals the average energy density of the field B.

Similar questions