Math, asked by modelvidhan143, 3 months ago

in a plane triangle find the maximum value of cos a cos b cos c​

Answers

Answered by sanjudnath
7

Step-by-step explanation:

The maximum value can be obtained cos a = cos b= cos c. You have to add the three valuesand they are equal . b and then add all the threevalues as a+b+c = 180.

Answered by Anonymous
11

Answer:

Area of \Delta ABC=\frac{1}{2}\times b\times h=\frac{1}{2}\times22\times3=33cm^2ΔABC=

2

1

×b×h=

2

1

×22×3=33cm

2

Area\ of\ \Delta ADC=\frac{1}{2}\times22\times3=33cm^2Area of ΔADC=

2

1

×22×3=33cm

2

Area of the quadrilateral ABCD

= Area of \Delta ABCΔABC+Area of \Delta ADCΔADC

=33cm^2+33cm^2=66cm^2=33cm

2

+33cm

2

=66cm

2

Hence, the required area= 66cm^266cm

2

Similar questions