In a ∆PQR, PS⊥QR, prove that PQ2+RS2= QS2+PR2
Answers
Answer:
→ PQ2 = 2 PR2 + 2 QR2 - QR22 PQ2 = 2 PR2 + QR2 2 2 PQ2 =2 PR2 + QR2
Step-by-step explanation:
We form our diagram from given
information, As :
Here
QS = 3 RS (Given )
and
QR = QS + RS = 3 RS + RS = 4 RS, So
RS = QR4 ----------(A)
Now we apply Pythagoras theorem in triangle PQS and get
PQ2 = PS2 + QS2
PS2 = PQ2 - QS2------------ (1)
And apply Pythagoras theorem in triangle PRS and get
PR2 PS2 + RS2
PS2 = PR2 - RS2 equation 1 we get و Substitute value from
→ PQ2 - QS2 = PR2 - RS2
→ PQ2 = PR2 - RS2 + QS2
→ PQ2 = PR2 - RS2 + (QR- RS )2
→ PQ2 = PR2 - RS2 + QR2 + RS2 - 2 QR *RS
→ PQ2 = PR2 + QR2 - 2 QR XRS
*Now substitute value from equation A and get
→ PQ2 = PR2 + QR2 - 2 QR XQR4
→PQ2 = PR2 + QR2 - QR22
→ PQ2 = 2 PR2 + 2 QR2 - QR22 PQ2 = 2 PR2 + QR2 2 2 PQ2 =2 PR2 + QR2