In a quad. ABCD ANGLE A + ANGLE D =90 DEGREE. THEN PROVE THAT AC^2 + BD^2=BC^2 + AD^2....
Answers
GIVEN: A quadrilateral ABCD , angle B = 90° And AD² = AB² + BC² + CD²
TO FIND: angle ACD
AC² = AB² + BC² ( by Pythagoras theorem)… … ..(1)
And AD² = (AB² + BC²) +CD² ( given)
=> AD² = AC² + CD² ( by 1)
So, in triangle ACD, angle opposite to AD = 90° ( by Converse of Pythagoras theorem)
=> < ACD = 90°
In triangle AEC ,
AE^2 + EC^2 = AC^2 --------------- [1]
In triangle BED ,
BE^2 + ED^2 =BD^2 --------------- [2]
Adding [1] and [2] ,
AC^2 + BD^2 = AE^2 + EC^2 + BE^2 + ED^2 --------------------- [3]
In triangle AED ,
AE^2 + ED^2 = AD^2 ---------------- [4]
In triangle BEC ,
BE^2 + EC^2 = BC^2 ---------------- [5]
Adding [4] and [5] ,
AD^2 + BC^2 = AE^2 + ED^2 +BE^2 + EC^2 = AE^2 + EC^2 + BE^2 + ED^2 ------------------------- [6]
From [3] and [6] ,
AC^2 +BD^2 = AD^2 + BC^2
Hence proved.