In a quad. ABCD, the line segments bisecting ZC and ZD meet at E. Prove that
ZA+ZB=2ZCED.
Answers
Answered by
2
∠1 = , ∠2
∠D
∆DEC
∠1 + ∠2 + ∠CED = 180°
∠CED = 180° - (∠1 + ∠2) -------------------- 1
∠A + ∠B + ∠C + ∠D = 360°
(∠A + ∠B) +
∠C +
∠D = 180°
(∠A + ∠B) + ∠1 + ∠2 = 180°
= (∠A + ∠B) = 180° - (∠1 + ∠2) ------------------ 2
Equation 1 and 2
(∠A + ∠B) = ∠CED
∠A + ∠B = 2∠CDE
Attachments:
![](https://hi-static.z-dn.net/files/d73/0cc75927357c731eae2f550b476eb390.jpg)
Similar questions