Math, asked by fazelk792, 6 months ago


In a quadrilateral ABCD , 3Â =2B =3Č =6Ď express all the angles in radians and degrees ​

Answers

Answered by MaheswariS
4

\underline{\textsf{Given:}}

\textsf{In quadrilateral ABCD,}

\mathsf{3\angle{A}=2\angle{B}=3\angle{C}=6\angle{D}}

\underline{\textsf{To find:}}

\textsf{All the angles of Quadrilateral ABCD}

\underline{\textsf{Solution:}}

\textsf{We know that,}

\textsf{The sum of all interior angles of quadriateral is}\;\mathsf{360^{\circ}}

\textsf{Consider,}

\mathsf{3\angle{A}=2\angle{B}=3\angle{C}=6\angle{D}=k(say)}

\texsf{Then,}

\mathsf{\angle{A}=\dfrac{k}{3},\angle{B}=\dfrac{k}{2},\angle{C}=\dfrac{k}{3},\angle{D}=\dfrac{k}{6}}

\textsf{But}\;\mathsf{\angle{A}+\angle{B}+\angle{C}+\angle{D}=360^{\circ}}

\mathsf{\dfrac{k}{3}+\dfrac{k}{2}+\dfrac{k}{3}+\dfrac{k}{6}=360^{\circ}}

\mathsf{\dfrac{2k+3k+2k+k}{6}=360^{\circ}}

\mathsf{\dfrac{8k}{6}=360^{\circ}}

\mathsf{\dfrac{k}{6}=45^{\circ}}

\implies\mathsf{k=270^{\circ}}

\mathsf{\angle{A}=\dfrac{270^{\circ}}{3}=90^{\circ}=\dfrac{\pi}{2}}

\mathsf{\angle{B}=\dfrac{270^{\circ}}{2}=135^{\circ}=\dfrac{3\pi}{4}}

\mathsf{\angle{C}=\dfrac{270^{\circ}}{3}=90^{\circ}=\dfrac{\pi}{2}}

\mathsf{\angle{D}=\dfrac{270^{\circ}}{6}=45^{\circ}=\dfrac{\pi}{4}}

Similar questions