Math, asked by rohinialandkar1, 9 months ago

In a quadrilateral
ABCD, 3A^=2B^=3c^=6D Express
all the angles in (1) degrees (2) radians​

Answers

Answered by mysticd
4

 Given \: in \: a \: Quadrilateral \: ABCD \\3A = 2B = 3C = 6D

 Let \: \blue { 3A = 2B = 3C = 6D = x }

 i) 3A = x \implies A = \frac{x}{3} \: --(1)

 ii) 2B = x \implies B = \frac{x}{2} \: --(2)

 iii) 3C = x \implies C = \frac{x}{3} \: --(3)

 ii) 6D = x \implies D = \frac{x}{6} \: --(4)

 We \:know \: that ,

 \pink{ \angle A + \angle B + \angle C + \angle D= 360\degree}

 \implies \frac{x}{3} + \frac{x}{2} +\frac{x}{3} +\frac{x}{6} = 360

 \implies \frac{2x+3x+2x+x}{6} = 360

 \implies \frac{8x}{6} = 360

 \implies x = 360 \times \frac{6}{8}

 \implies x = 45 \times 6

 \implies x = 270 \: --(5)

 Now, 1. A = \frac{x}{3} \\=\frac{270}{3}\\= 90\degree

 A = 90 \times \frac{\pi}{180} \\= \Big(\frac{\pi }{2}\Big)^{c}

2. B = \frac{x}{2} \\=\frac{270}{2}\\= 135\degree

 A = 135 \times \frac{\pi}{180} \\= \Big(\frac{37\pi }{36}\Big)^{c}

3. C  = \frac{x}{3} \\=\frac{270}{3}\\= 90\degree

 C  = 90\times \frac{\pi}{180} \\= \Big(\frac{\pi }{2}\Big)^{c}

4. D = \frac{x}{6} \\=\frac{270}{6}\\= 45\degree

 D = 45 \times \frac{\pi}{180} \\= \Big(\frac{\pi }{4}\Big)^{c}

•••♪

Similar questions