In a quadrilateral ABCD AB is equal to 28 CM BC is equal to 26 CM CD is equal to 50 cm DC is equal to 40 cm and diagonal AC is equal to 30 cm find the area of the quadrilateral
Answers
Answered by
36
In triangle ABC
Area (ABC) = 1/2 * 28 * 26
= 364 Cm^2
in triangle ADC
Area (ADC) = 1/2 * 40 * 50
= 1000 Cm^2
Area = 1000 + 364
= 1364 Cm^2
Area (ABC) = 1/2 * 28 * 26
= 364 Cm^2
in triangle ADC
Area (ADC) = 1/2 * 40 * 50
= 1000 Cm^2
Area = 1000 + 364
= 1364 Cm^2
Answered by
55
Solution :-
There is a mistake in this question. CD = 50 cm and again DC = 40 cm. I think it should be DA = 40 cm
In quadrilateral ABCD, there are two triangles - Δ ADC and Δ ABC and AC is the common side of these two triangles.
Using Heron's formula of area of triangle = √s(s - a)(s - b)(s - c)
In Δ ADC -
Semi perimeter = s = (a + b + c)/2
⇒ s = (40 + 50 + 30)/2
⇒ s = (120/2)
⇒ s = 60 cm
In Δ ABC -
s = (28 + 26 + 30)/2
⇒ s = 84/2
s = 42 cm
Area of Δ ADC = √60(60 - 40)(60 - 50)(60 - 30)
⇒ √60*20*10*30
⇒ √360000
Area of Δ ADC = 600 cm²
Area of triangle Δ ABC = √ 42(42 - 28)(42 - 26)(42 - 30)
⇒ √ 42*14*16*12
⇒ √112896
Area of Δ ABC = 336 cm²
Area of quadrilateral ABCD = Area of Δ ADC + Area of Δ ABC
⇒ 600 cm² + 336 cm²
= 936 cm²
So, area of quadrilateral ABCD is 936 cm²
There is a mistake in this question. CD = 50 cm and again DC = 40 cm. I think it should be DA = 40 cm
In quadrilateral ABCD, there are two triangles - Δ ADC and Δ ABC and AC is the common side of these two triangles.
Using Heron's formula of area of triangle = √s(s - a)(s - b)(s - c)
In Δ ADC -
Semi perimeter = s = (a + b + c)/2
⇒ s = (40 + 50 + 30)/2
⇒ s = (120/2)
⇒ s = 60 cm
In Δ ABC -
s = (28 + 26 + 30)/2
⇒ s = 84/2
s = 42 cm
Area of Δ ADC = √60(60 - 40)(60 - 50)(60 - 30)
⇒ √60*20*10*30
⇒ √360000
Area of Δ ADC = 600 cm²
Area of triangle Δ ABC = √ 42(42 - 28)(42 - 26)(42 - 30)
⇒ √ 42*14*16*12
⇒ √112896
Area of Δ ABC = 336 cm²
Area of quadrilateral ABCD = Area of Δ ADC + Area of Δ ABC
⇒ 600 cm² + 336 cm²
= 936 cm²
So, area of quadrilateral ABCD is 936 cm²
Similar questions