Math, asked by shillygale, 7 months ago

in a quadrilateral abcd
AC=AD and AB bisects angle A Show that triangle ABC is congruent to TRIANGLE ABD what can you say about bc and bd? ​

Attachments:

Answers

Answered by Anonymous
5

Answer:

Congruence of triangles:

Two ∆’s are congruent if sides and angles of a triangle are equal to the corresponding sides and angles of the other ∆.

 

In Congruent Triangles corresponding parts are always equal and we write it in short CPCT i e, corresponding parts of Congruent Triangles.

 

It is necessary to write a correspondence of vertices correctly for writing the congruence of triangles in symbolic form.

 

Criteria for congruence of triangles:

There are 4 criteria for congruence of triangles.

In this question we use SAS

SAS( side angle side):

Two Triangles are congruent if two sides and the included angle of a triangle are equal to the two sides and included angle of the the other triangle.

----------------------------------------------------------------------------------------------------

Solution:

 

Given: In quadrilateral ABCD,

AC = AD & AB bisects ∠A i.e, ∠CAB = ∠DAB

To prove,

ΔABC ≅ ΔABD

Proof,

In ΔABC  & ΔABD,

AB = AB (Common)

AC = AD (Given)

∠CAB = ∠DAB (AB is bisector)

Hence, ΔABC ≅ ΔABD.         (by SAS congruence rule)

Then, BC= BD (by CPCT)

 

Thus, BC & BAD are equal.

========================================================

Hope this will help you...

Answered by MissAngry
12

Question :-

In quadrilateral ACBD, AC = AD and AB bisects ∠ A (see figure). Show that ∆ABC ≅ ∆ABD. What can you say about BC and BD?

Answer :-

In quadrilateral ACBD, we have AC = AD and AB being the bisector of ∠A.

Now, In ∆ABC and ∆ABD,

AC = AD (Given)

∠ CAB = ∠ DAB ( AB bisects ∠ CAB)

and AB = AB (Common)

∴ ∆ ABC ≅ ∆ABD (By SAS congruence axiom)

∴ BC = BD (By CPCT)

Plz mrk as brainliest ❤

Similar questions