In a quadrilateral ABCD angle A+angle D=90degree prove that ACsquare +BDsquare =ADsquare +BCsquare.
Answers
Answered by
1
In triangle AEC ,
AE^2 + EC^2 = AC^2 --------------- [1]
In triangle BED ,
BE^2 + ED^2 =BD^2 --------------- [2]
Adding [1] and [2] ,
AC^2 + BD^2 = AE^2 + EC^2 + BE^2 + ED^2 --------------------- [3]
In triangle AED ,
AE^2 + ED^2 = AD^2 ---------------- [4]
In triangle BEC ,
BE^2 + EC^2 = BC^2 ---------------- [5]
Adding [4] and [5] ,
AD^2 + BC^2 = AE^2 + ED^2 +BE^2 + EC^2 = AE^2 + EC^2 + BE^2 + ED^2 ------------------------- [6]
From [3] and [6] ,
AC^2 +BD^2 = AD^2 + BC^2
Hence proved.
AE^2 + EC^2 = AC^2 --------------- [1]
In triangle BED ,
BE^2 + ED^2 =BD^2 --------------- [2]
Adding [1] and [2] ,
AC^2 + BD^2 = AE^2 + EC^2 + BE^2 + ED^2 --------------------- [3]
In triangle AED ,
AE^2 + ED^2 = AD^2 ---------------- [4]
In triangle BEC ,
BE^2 + EC^2 = BC^2 ---------------- [5]
Adding [4] and [5] ,
AD^2 + BC^2 = AE^2 + ED^2 +BE^2 + EC^2 = AE^2 + EC^2 + BE^2 + ED^2 ------------------------- [6]
From [3] and [6] ,
AC^2 +BD^2 = AD^2 + BC^2
Hence proved.
abhilash86:
where
Similar questions