In a quadrilateral ABCD, ∠B = 90° and ∠D = 90°. Prove that :
2AC² - AB² = BC² + CD² + DA²
Answers
Answered by
99
Answer:
is in the attachment....
Step-by-step explanation:
Plz come online
Answered by
11
Given :-
In a quadrilateral ABCD, ∠B = 90° and ∠D = 90°.
To Prove :-
2AC² - AB² = BC² + CD² + DA²
Solution :-
In △ABC , using pythagoras theorem
➞ AC² = AB² + BC²
➞ AB² = AC² - B²__( i )
In △ADC, using pythagoras theorem
➞AC² = AD² + DC²__ ( ii )
LHS = 2AC² - AB²
➞ 2AC² - (AC² - BC²) __from ( i )
➞ 2AC² - AC² + BC²
➞ AC² + BC²
➞ AD² + DC² + BC²__from ( ii )
LHS = RHS Hence Proved.
▂▂▂▂▂▂▂▂▂▂▂▂
❣️❣️ Hope this helps you sukdu ❣️❣️
Similar questions