Math, asked by jack1432, 11 months ago

in a quadrilateral abcd cosacosb+sincsind=??​

Answers

Answered by Agastya0606
0

Given: A quadrilateral ABCD

To find: cos A cos B + sin C sin D = ?

Solution:

  • Now we have given the quadrilateral ABCD.
  • Consider the sum of adjacent angles is 180 degree, so:

              A + B = 180 and C + D = 180

  • Now using these equations, we get:

              A + B = C + D

  • Using cos on both sides, we get:

              cos( A + B) = cos(C + D)

  • Now we know the formula:

              cos(x+y) = cos x cos y - sin x sin y

  • Applying this, we get:

              cos A cos B - sin A sin B = cos C cos D - sin C sin D

              cos A cos B + sin C sin D = cos C cos D + sin A sin B

Answer:

        So the value of cos A cos B + sin C sin D is cos C cos D + sin A sin B

Similar questions