in a quadrilateral abcd cosacosb+sincsind=??
Answers
Answered by
0
Given: A quadrilateral ABCD
To find: cos A cos B + sin C sin D = ?
Solution:
- Now we have given the quadrilateral ABCD.
- Consider the sum of adjacent angles is 180 degree, so:
A + B = 180 and C + D = 180
- Now using these equations, we get:
A + B = C + D
- Using cos on both sides, we get:
cos( A + B) = cos(C + D)
- Now we know the formula:
cos(x+y) = cos x cos y - sin x sin y
- Applying this, we get:
cos A cos B - sin A sin B = cos C cos D - sin C sin D
cos A cos B + sin C sin D = cos C cos D + sin A sin B
Answer:
So the value of cos A cos B + sin C sin D is cos C cos D + sin A sin B
Similar questions