In a quadrilateral ABCD, prove that cos(A+B) = cos ( C + D)
Answers
Answered by
13
Answer:
hi
Step-by-step explanation:
In a quadrilateral ABCD,
Solution :
A+B+C+D=2πA+B+C+D=2π
⇒A+B=2π−(C+D)⇒A+B=2π-(C+D)
∴sin(A+B)+sin(C+D)=sin(2π−(C+D))+sin(C+D)∴sin(A+B)+sin(C+D)=sin(2π-(C+D))+sin(C+D)
As, sin(2π−θ)=−sinθsin(2π-θ)=-sinθ
∴sin(2π−(C+D))+sin(C+D)=−sin(C+D)+sin(C+D)=0∴sin(2π-(C+D))+sin(C+D)=-sin(C+D)+sin(C+D)=0
∴sin(A+B)+sin(C+D)=0∴sin(A+B)+sin(C+D)=0
Now,
cos(A+B)=cos(2π−(C+D))cos(A+B)=cos(2π-(C+D))
As, cos(2π−θ)=cosθcos(2π-θ)=cosθ
∴cos(2π−(C+D))=cos(C+D)∴cos(2π-(C+D))=cos(C+D)
∴cos(A+B)=cos(C+D).
Hope it helps you
Answered by
11
henloooooo..... :)))))))))))))))))))))
Attachments:
Similar questions