Math, asked by AreyBhaiBhai, 4 months ago

In a quadrilateral ABCD, the angle A B C and D are in ratio 1 :2: 3 : 4 . find the measure of each angle of the quadrilateral​

Answers

Answered by sushreetejaswani
2

Step-by-step explanation:

Let the angles of quadrilateral be x,2x,3x and 4x

The sum of all angles=180⁰

Therefore, x+2x+3x+4x=180⁰

10x=180⁰

x=180/10

x=18⁰

x=18⁰, 2x=18×2 , 3x=18×3 , 4x=18×4

=36⁰ =54⁰ =72

Answered by thebrainlykapil
103

\large\underline{ \underline{ \sf \maltese{ \: Question:- }}}

  • In a quadrilateral ABCD, the angle A B C and D are in ratio 1 :2: 3 : 4 . find the measure of each angle of the quadrilateral

\large\underline{ \underline{ \sf \maltese{ \: Given:- }}}

\red{\boxed{ \sf \blue{ \angle{A}\:: \angle{B} \::         \angle{C}\::  \angle{D}\: = \: 1:2:3:4 }}}

  • \sf\green{Let \: \angle{A}\: =  \blue{\fbox\orange{x }}    }
  • \sf\green{Let \: \angle{B}\: =  \blue{\fbox\orange{2x }}    }
  • \sf\green{Let \: \angle{C}\: =  \blue{\fbox\orange{3x }}    }
  • \sf\green{Let \: \angle{D}\: =  \blue{\fbox\orange{4x}}    }

━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{ \underline{ \sf \maltese{ \: Solution:- }}}

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\:  \angle{A}\: +  \:  \angle{B} \:  +  \:        \angle{C}\:   +  \: \angle{D}\:  = \: 360 }} }\\ \\\end{gathered}\end{gathered}\end{gathered}

\qquad \quad {:} \longrightarrow \sf{\sf{ x \:  +  \: 2x \:  +  \: 3x \:  + 4x \:  =  \: 360 }}\\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{ 10x \:  =  \: 360 }}\\ \\

\qquad \quad {:} \longrightarrow \sf{\sf{ x \:  =  \:\frac{ 360}{10} }}\\ \\

\qquad \quad {:}\longrightarrow\sf{\sf{x \: = \:   \frac{36\cancel{0}}{1\cancel{0}}  }}\\ \\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{x  \: = \: 36  }}}

━━━━━━━━━━━━━━━━━━━━━━━━━

Measures of Angles:-

  • ∠A = x = \green{\fbox\purple{\:36° }}
  • ∠B = 2x = 2 × 36 = \green{\fbox\purple{\:72° }}
  • ∠C = 3x = 3 × 36 = \green{\fbox\purple{\:108° }}
  • ∠D = 4x = 4 × 36 = \green{\fbox\purple{\:144° }}

━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{ \underline{ \sf \maltese{ \: Verification:- }}}

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\:  \angle{A}\: +  \:  \angle{B} \:  +  \:        \angle{C}\:   +  \: \angle{D}\:  = \: 360 }} }\\ \\\end{gathered}\end{gathered}\end{gathered}

\qquad \quad {:} \longrightarrow \sf{\sf{36 \:  +  \: 72 \:  +  \: 108 \:  + \: 144\:  =  \: 360 }}\\ \\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{360° \: = \: 360° }}}

━━━━━━━━━━━━━━━━━━━━━━━━━

\bf \therefore \; ∠ \; A = 36°

\bf \therefore \; ∠ \; B = 72°

\bf \therefore \; ∠ \; C = 108°

\bf \therefore \; ∠ \; D = 144°

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions