In a quadrilateral ABCD, the bisector of angle C and
D intersect at O
Prove that angle COD =1/2 (angle A+angle B)
Answers
Answered by
9
Answer:
In given figure ABCD is a quadrilateral.
⇒ CO and DO are bisector of ∠C and ∠D
In △COD,
⇒ ∠COD+∠1+∠2=180 ∘ (Sum of all interior angles of triangle is 180∘)
⇒ ∠COD=180∘−(∠1+∠2)
⇒ ∠COD=180∘ −∠2-∠1
⇒ ∠COD=180 ∘−( 1/2∠C+1/2∠D)
⇒ ∠COD=180 ∘− 1/2 [360 ∘ −(∠A+∠B)]
⇒ ∠COD=180 ∘−180 ∘+ 1/2(∠A+∠B)
∴ ∠COD= 1/2 (∠A+∠B)
Hence proved
Attachments:
Similar questions