Math, asked by llBrainlyFirell, 6 months ago

In a quadrilateral ABCD the line segment bisecting ∠C and ∠D meet at E.prove that ∠A + ∠B = 2∠CED​

Answers

Answered by llAloneSameerll
6

━━━━━━━━━━━━━━━━━━━━━━━━━

\huge{\underline{\underline{\sf{\orange{</p><p>Question:-}}}}}

In a quadrilateral ABCD the line segment bisecting ∠C and ∠D meet at E.prove that ∠A + ∠B = 2∠CED

━━━━━━━━━━━━━━━━━━━━━━━━━

\huge{\underline{\underline{\sf{\orange{</p><p>Solution:-}}}}}

Let CE and DE be the bisectors of ∠C and ∠D respectively.

then \:  \angle \: 1 =  \frac{1}{2}  \angle \: c \: and \: \angle \: 2 =  \frac{1}{2} \angle \: d. \\

In ∆DEC,we have ∠1 + ∠2 + ∠CED = 180°

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀(Sum of a ∆ is 180°)

⇒∠CED = 180° - (∠1 + ∠2).

Again, the sum of the angles of a quadrilateral is 360°.

\therefore \:  \angle \: A \:  + \angle \: B + \angle \: C + \angle \: D = 360\degree \\

 ⇒  \frac{1}{2} (\angle \: A + \angle \: B) +  \frac{1}{2} \angle \: C +  \frac{1}{2} \angle \: D = 180\degree \\

 ⇒  \frac{1}{2} (\angle \: A + \angle \: B) + \angle \: 1 + \angle \: 2 = 180\degree \\

 ⇒  \frac{1}{2} (\angle \: A + \angle \: B) = 180\degree - (\angle \: 1 + \angle \: 2). \\

from \: (i) \: and \: (ii) \: we \: get \:  \frac{1}{2} (\angle \: A  + \angle \: B) = \angle \: CED \\

Hence,∠A + ∠B = 2∠CED.

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions