Math, asked by bhumika225, 1 year ago

in a quadrilateral if each pair of opposite angles is equal then it is a parallelogram

Answers

Answered by Anonymous
10
Hey there !!

➡ Given:- 

→ ABCD is a quadrilateral.

→  \angle 1 = \angle 3 and  \angle 2 = \angle 4 .

➡ To Prove :-

→ ABCD is a parallelogram.

➡ Proof :-

→ ABCD is a quadrilateral.

Then,

=>  \angle 1 + \angle 2 + \angle 3 + \angle 4 = 360 \degree .

=>  \angle 1 + \angle 1 + \angle 2 + \angle 2 = 360 \degree .

[ →  \angle 1 = \angle 3  and  \angle 2 = \angle 4 . ]

=>  2 \angle 1 + 2 \angle 2 = 360 \degree .

=>  2 ( \angle 1 + \angle 2 ) = 360 \degree .

=>  \angle 1 + \angle 2 = \frac{ 360 \degree }{2} .

=>  \angle 1 + \angle 2 = 180 \degree .

▶ But, these are the pairs of co-interior angles. 

→ So, AD || BC.

▶Now, Again

=>  \angle 1 + \angle 2 + \angle 3 + \angle 4 = 360 \degree .

=>  \angle 1 + \angle 1 + \angle 4 + \angle 4 = 360 \degree .

[ →  \angle 1 = \angle 3  and  \angle 2 = \angle 4 . ]

=>  2 \angle 1 + 2 \angle 4 = 360 \degree .

=>  2 ( \angle 1 + \angle 4 ) = 360 \degree .

=>  \angle 1 + \angle 4 = \frac{ 360 \degree }{2} .

=>   \angle 1 + \angle 4 = 180 \degree .

▶ But, these are the pairs of co-interior angles.

→ So, AB || CD.

▶ Now, we have AB || CD and AD || BC.......(1).

And, in parallelogram opposite pairs of sides are parallel..........(2).

From equation (1) and (2), we get

=> ABCD is a parallelogram.

✔✔ Hence, it is proved ✅✅.

____________________________________

THANKS

#BeBrainly.
Attachments:
Answered by fanbruhh
6

 \huge{hey}


 \huge { \mathfrak{here \: is \: answer}}


 \bf{Given}
ABCD is a quardilateral ..

 \sf{ \angle{1} =  \angle{3}}

 \sf{ \angle{2} =  \angle{4}}


 \bf{to \: prove}
ABCD is a parallelogram..

 \bf{proof}
 \sf{ \angle{1}   +  \angle{2} +  \angle{3} +  \angle{4} = 360 \degree}

 \sf{ \angle{1} +  \angle{1} +  \angle{2} +  \angle{2} = 360 \degree}
(because angle 1 = angle 3 and angle 2 = angle 4)


 \sf{2 \angle{1} + 2 \angle{2} = 360 \degree}

 \sf{2( \angle{1} +  \angle{2} )= 360 \degree}

 \sf{ \angle{1} +  \angle{2} =  \frac{360 \degree}{2} }

 \sf{ \angle{1} +  \angle{2} = 180 \degree}
but these are co interior angles

hence

 \bf{ad \parallel \: bc}
similarly

 \bf{ab \parallel \: cd}


since

parallelogram have opposite sides are equal


hence .


 \bf{ABCD \: is \: a \: parallelogram}

 \huge \boxed{hope \: it \: helps}

 \huge{ \mathbb{THANKS}}

Attachments:
Similar questions