Math, asked by Shivani22119, 6 months ago

In a quadrilateral interior angles are in ascending order and difference between two consecutive angles is

20°. Then find all the angles.​

Answers

Answered by Anonymous
23

 \rm  \large\bold{Hola!}

GiveN :

→ Let those angles are A, B, C & D

 \mapsto \sf \:  \angle \:A- \angle \: B= \angle \: B- \angle \: C= \angle \: C- \angle \: D=20 \\

 \mapsto \sf\angle A +\angle B+ \angle C+\angle D= 360 \degree</p><p>

______________________________________________

To FienD :

→ All the interior angles

______________________________________________

SolutioN :

 \sf \: \angle A-\angle B =\angle B - \angle C

 \sf \implies \: 2\angle B = \angle A + \angle C \underline{ \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:   \: }(1)

Again,

 \sf\angle \: B- \angle \: C= \angle \: C- \angle \:D

 \sf \implies \: 2\angle \: C  = \angle B + \angle D \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }(2)

 \implies \sf\angle \: B  +  \angle \: C \:  = 180 \degree \underline{ \:  \:  \:  \:  \:  \:  \:  \: }(3)

Adding eqn 1 & 2,

  \implies \sf\angle A +\angle B+ \angle C+\angle D= 2( \angle \: B  +  \angle \: C) \\

We know,

 \mapsto \sf\angle \: B   -   \angle \: C= 20 \degree \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }(4)

Calculating eqn 3 & 4,

 \sf { \underline{\boxed{ \sf{\angle B = 100 }}}}

and,

 \sf { \underline{\boxed {\sf{\angle  C= 80 }}}}

Hence,

 { \underline{ \boxed{ \sf\angle A = \angle B +20\degree \:  = 120 \degree}}}

and

 {  \underline{ \boxed{\sf \: \angle D= \angle C -20\degree = 60 \degree}}}

______________________________________________

 \therefore { \underline{ \boxed{\sf  \: All   \: \: the   \: \: angles  \:  \: are  \:  \: 120 \degree \: , \: 100 \degree \:,  \: 80 \degree \: \:  and \:  \: 60 \degree }}}\\

_______________________________________________

HAVE A WONDERFUL DAY...

Similar questions