In a quadrilateral, the angles are x , (x+40) , (x+60) , (x+80).Find the angles?
Answers
Answer:
PLEASE MARK ME AS THE BRAINLIEST
Step-by-step explanation:
Step-by-step explanation:In a quadrilateral, sum of all angles is equal to 360°
Step-by-step explanation:In a quadrilateral, sum of all angles is equal to 360°x + (x+40) + (x+60) + (x+80) = 360
Step-by-step explanation:In a quadrilateral, sum of all angles is equal to 360°x + (x+40) + (x+60) + (x+80) = 3604x + 180 = 360
Step-by-step explanation:In a quadrilateral, sum of all angles is equal to 360°x + (x+40) + (x+60) + (x+80) = 3604x + 180 = 3604x = 360 - 180
Step-by-step explanation:In a quadrilateral, sum of all angles is equal to 360°x + (x+40) + (x+60) + (x+80) = 3604x + 180 = 3604x = 360 - 1804x = 180
Step-by-step explanation:In a quadrilateral, sum of all angles is equal to 360°x + (x+40) + (x+60) + (x+80) = 3604x + 180 = 3604x = 360 - 1804x = 180x = 180 / 4
Step-by-step explanation:In a quadrilateral, sum of all angles is equal to 360°x + (x+40) + (x+60) + (x+80) = 3604x + 180 = 3604x = 360 - 1804x = 180x = 180 / 4x = 45°
Step-by-step explanation:In a quadrilateral, sum of all angles is equal to 360°x + (x+40) + (x+60) + (x+80) = 3604x + 180 = 3604x = 360 - 1804x = 180x = 180 / 4x = 45°So, the angles in the quadrilaterals are 45°, 95°, 105°, 125°