in a random triangle, prove that : tan A - cot B - cot C = tanA.cotB.cotC
Answers
Hence it is proved that, tan A - cot B - cot C = tanA.cotB.cotC
Given,
tan A - cot B - cot C = tanA.cotB.cotC
tan A - 1/tan B - 1/tan C = tanA.cotB.cotC
tanAtanBtanC-tanC-tanB / tanBtanC = tanA / tanBtanC
tanAtanBtanC-tanC-tanB = tanA
tanAtanBtanC = tanA + tanB + tanC
tanAtanBtanC - tanA = tanB + tanC
tanA ( tanBtanC - 1) = tanB + tanC
tanA = ( tanB + tanC ) / ( tanBtanC - 1)
tanA = - (tanB+tanC)/(1-tanBtanC)
tanA = - tan(B-C) ...........(1)
but, we have, B-C = π-A
tan(π-∅) = - tan∅
∴ tan(B-C) = tan(π-A) = -tanA
substituting the above value in eqn (1), we get,
tanA = - (-tanA)
tanA = tanA.
Hence proved.
tan A - cot B - cot C = tan A . cot B . cot C , proved
Step-by-step explanation:
Given as :
In a Triangle A B C
To Prove : tan A - cot B - cot C = tan A . cot B . cot C
From Left hand side
tan A - cot B - cot C
= tan A - - ( ∵ )
Taking LCM
= ..........1
∵ In any Triangle, A + B + C = π
Or, A + B = π - C
tan ( A + B ) = tan ( π - C )
Or, = - tan C
Or, tan A + tan B = - tan C + tan A tan B tan C
Or, tan A tan B tan C = tan A + tan B + tan C .......2
So, from eq 1 and e 2
=
=
= tan A . cot B . cot C ( ∵ )
So, tan A - cot B - cot C = tan A . cot B . cot C
i.e Left hand side = Right hand side
Hence, tan A - cot B - cot C = tan A . cot B . cot C , proved Answer