Math, asked by stepper2196, 1 month ago

In a rational number, twice the numerator is 2 more than the denominator. If 3 is added to each, the numerator and the denominator, the new fraction is 2/3. Find the original number.​

Answers

Answered by Anonymous
2

Answer :

  • Original number is 7/12.

Given :

  • In a rational number, twice the numerator is 2 more than the denominator
  • If 3 is added to each the numerator and the denominator, the new fraction is 2/3

To find :

  • Original number

Solution :

Given, twice the numerator is 2 more than the denominator so,

  • Let the numerator be x
  • Denominator be 2x - 2

We know that,

  • Fraction = Numerator/Denominator

➞ x/2x - 2

And also Given , if 3 added to each the numerator and denominator so ,

  • x + 3 / 2x - 2 + 3 = 2/3

➞ x + 3 / 2x - 2 + 3 = 2/3

➞ (x + 3) / 2x + 1 = 2/3

Now , cross multiplying we get,

➞ 3(x + 3) = 2(2x + 1)

➞ 3x + 9 = 4x + 2

➞ 3x - 4x = 2 - 9

➞ -x = - 7

➞ x = 7

Then,

  • Numerator is 7
  • Denominator = 2x - 2 = 2(7) - 2 = 12

Finding the original number :

➞ Fraction = Numerator/Denominator

➞ 7/12

Hence , Original number is 7/12.

Verification :

➞ x/2x - 2

➞ 7/2(7) - 2

➞7/14 - 2

➞7/12

Hence , Verified.

Answered by Anonymous
51

☯ Let the numerator be x and the denominator be (2x -2).

{ }

\:\:\:\:\:\:\:\:\:\:\:\:\:\:━━━━━━━━━━━━━━━━━━

{ }

\bigstar\:\sf\bf{\underline{By\:Using\:the\:Formula:}}

  • {\underbrace{\underline{\sf{\bf{\red{Fraction\:=\:{\dfrac{Numerator}{Denominator}}}}}}}}

{ }

\:\:\:\:\:\:\:\leadsto\:\sf{\dfrac{x}{(2x\:-\:2)}}

{ }

  • So, the numerator and denominator are increased by 3, then fraction is ⅔.

{ }

\:\:\:\:\:\:\:\:\dashrightarrow\:\sf{\dfrac{(x\:+\:3)}{(2x\:-\:2\:+\:3)}}\:=\:{\dfrac{2}{3}}

{ }

\:\:\:\:\:\:\:\:\dashrightarrow\:\sf{\dfrac{(x\:+\:3)}{(2x\:+\:1)}}\:=\:{\dfrac{2}{3}}

{ }

  • By Cross - Multiplying We Get ;

{ }

\:\:\:\:\:\::\:\Longrightarrow\:\sf{3(x\:+\:3)\:=\:2(2x\:+\:1)}

{ }

\:\:\:\:\:\::\:\Longrightarrow\:\sf{3x\:+\:9\:=\:4x\:+\:2}

{ }

\:\:\:\:\:\::\:\Longrightarrow\:\sf{3x\:-\:4x\:=\:2\:-\:9}

{ }

\:\:\:\:\:\::\:\Longrightarrow\:\sf{-x\:=\:-7}

{ }

\:\:\:\:\:\::\:\Longrightarrow\:\sf{x\:=\:7}

{ }

  • The numerator is x = 7, denominator is (2x - 2) = [2(7) - 2] = 14 - 2 = 12.

{ }

  • And the fraction is \:\sf{\dfrac{numerator}{denominator}}\:=\:\sf{\dfrac{7}{12}}

{ }

{ }

\:\:\:\:\:\:\therefore\:{\underline{\sf{Hence,\: the\:Original\:Number\:is\:{\sf{\bf {\dfrac{7}{12}} }}}}}.

{ }

\:\:\:\:\:\:\:\:\:\:\:\:\:\:━━━━━━━━━━━━━━━━━━

{ }

\:\:{\underline{\sf{\bold{\purple{V\:E\:R\:I\:F\:I\:C\:A\:T\:I\:O\:N:}}}}}

{ }

\:\:\:\:\:\:\:\leadsto\:\sf{\dfrac{x}{(2x\:-\:2)}}

{ }

\:\:\:\:\:\:\:\leadsto\:\sf{\dfrac{7}{2}}(7)\:-\:2

{ }

\:\:\:\:\:\:\:\leadsto\:\sf{\dfrac{7}{14}}\:-\:2

{ }

\:\:\:\:\:\:\:\leadsto\:\sf{\dfrac{7}{12}}

{ }

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{\underline{\underline{\textsf{\textbf{\pink{Hence,\:Verified\:!!}}}}}}

{ }

\:\:\:\:\:\:\:\:\:\:\:\:\:\:━━━━━━━━━━━━━━━━━━

{ }

Similar questions