Chemistry, asked by pksgupta3256, 1 year ago

In a reaction between A and B, the initial rate of reaction (r0) was measured for different initial concentrations of A and B as given below: A/ mol L−1 0.20 0.20 0.40 B/ mol L−1 0.30 0.10 0.05 r0/ mol L−1 s−1 5.07 × 10−5 5.07 × 10−5 1.43 × 10−4 What is the order of the reaction with respect to A and B?

Answers

Answered by qwsuccess
2

The order will be 1.5 with respect to A and 0 with respect to B.

Let the order of the reaction with respect to A be x and with respect to B be y.

  • r = k * [A]^x * [B]^y
  • 5.07 * 10^(-5) = k * [0.2]^x * [0.3]^y                                  (1)
  • 5.07 * 10^(-5) = k * [0.2]^x * [0.1]^y                                   (2)
  • 1.43 * 10^(-4) = k * [0.4]^x * [0.05]^y                                 (3)

dividing (1) by (2),

  •    1 = [0.3]^y / [0.1]^y
  • ⇒ [0.3]^0 / [0.1]^0  = [0.3]^y / [0.1]^y
  • ⇒ y = 0

dividing (3) by (2),

  • (1.43 * 10^(-4)) / (5.07 * 10^(-5)) = [0.4]^x * [0.05]^y / [0.2]^x * [0.1]^y

since y = 0,

[0.05]^y = [0.3]^y = 1

  • ⇒ 2.821 = 2^x
  • ⇒ log 2.821 = log 2^x = x log2
  • ⇒ x = log2.821 / log2 = 1.496 ≈ 1.5
Answered by bestwriters
3

The order of the reaction with respect to A and B is 1.5

Explanation:

Let x be the order of the reaction with respect to A

Let y be the order of the reaction with respect to B

The order of the reaction is given by the formula:

\bold{r_{0}=k[A]^{x}[B]^{y}}

\bold{5.07 \times 10^{-5}=k[0.20]^{x}[0.30]^{y}\longrightarrow(1)}

\bold{5.07 \times 10^{-5}=k[0.20]^{x}[0.10]^{y}\longrightarrow(2)}

\bold{1.43 \times 10^{-1}=k[0.40]^{x}[0.05]^{y}\longrightarrow(3)}

On dividing equation (1) and (2), we get,

\bold{\frac{5.07 \times 10^{-5}}{5.07 \times 10^{-5}}=\frac{k[0.20]^{x}[0.30]^{y}}{k[0.20]^{x}[0.10]^{y}}}

\bold{1=\frac{[0.30]^{y}}{[0.10]^{y}}}

\bold{\left(\frac{0.30}{0.10}\right)^{0}=\left(\frac{0.30}{0.10}\right)^{y}}

\bold{\therefore y = 0}

On dividing equation (2) and (3), we get,

\bold{\frac{1.43 \times 10^{-4}}{5.07 \times 10^{-5}}=\frac{k[0.40]^{x}[0.05]^{y}}{k[0.20]^{x}[0.30]^{y}}}

On substituting the values of y, we get,

\bold{\frac{1.43 \times 10^{-4}}{5.07 \times 10^{-5}}=\frac{[0.40]^{x}}{[0.20]^{x}}}

Anything power zero is one.

\bold{2.821=2^{x}}

On taking log on both sides, we get,

\bold{\log 2.821=x \log 2}

\bold{x=\frac{\log 2.821}{\log 2}}

\bold{\therefore x=1.496 \approx 1.5}

Attachments:
Similar questions