Math, asked by arpita9103, 1 year ago

In a rectangle ABCD diagonals intersect at O ,if angle OAB=30 .find angle ACB and angle COD

Answers

Answered by yeahitsme
8

Step-by-step explanation:

In \triangle ABC,△ABC,

\Rightarrow⇒ \angle CAB+\angle ABC+\angle ACB=180^o.∠CAB+∠ABC+∠ACB=180

o

.

\Rightarrow⇒ 30^o+90^o+\angle ACB=180^o.30

o

+90

o

+∠ACB=180

o

.

\Rightarrow⇒ 120^o+\angle ACB=180^o.120

o

+∠ACB=180

o

.

\therefore∴ \angle ACB=60^o∠ACB=60

o

We know that, diagonals of rectangle are equal and bisect each other equally.

\therefore∴ AO=OC=BO=ODAO=OC=BO=OD

In \triangle ABO△ABO,

\Rightarrow⇒ AO=BOAO=BO

\Rightarrow⇒ \angle OAB=\angle ABO∠OAB=∠ABO [ Angle opposite to equal side are also equal ]

\Rightarrow⇒ \angle OAB=\angle ABO=30^o∠OAB=∠ABO=30

o

\Rightarrow⇒ \angle OAB+\angle ABO+\angle BOA=180^o∠OAB+∠ABO+∠BOA=180

o

\Rightarrow⇒ 30^o+30^o+\angle BOA=180^o.30

o

+30

o

+∠BOA=180

o

.

\Rightarrow⇒ \angle BOA=120^o.∠BOA=120

o

.

\Rightarrow⇒ \angle BOA=\angle COD∠BOA=∠COD [ Vertically opposite angle ]

\therefore∴ \angle COD=120^o∠COD=120

o

\Rightarrow⇒ \angle COD+\angle BOC=180^o∠COD+∠BOC=180

o

[ Linear pair ]

\Rightarrow⇒ 120^o+\angle BOC=180^o120

o

+∠BOC=180

o

\therefore∴ \angle BOC=60^o.∠BOC=60

o

.

\Rightarrow⇒ \angle ACB=60^o,\,\angle ABO=30^o,\,\angle COD=120^o∠ACB=60

o

,∠ABO=30

o

,∠COD=120

o

and \angle BOC=60^o.∠BOC=60

o

.

Answered by XxArmyGirlxX
8

In △ABC,

⇒ ∠CAB+∠ABC+∠ACB=180⁰.

⇒ 30⁰ +90⁰+∠ACB=180⁰.

⇒ 120⁰ +∠ACB=180⁰.

∴ ∠ACB=60⁰

⇒ ∠OAB=∠ABO=30⁰

⇒ ∠OAB+∠ABO+∠BOA=180 ⁰

⇒ 30⁰+30⁰+∠BOA=180⁰.

⇒ ∠BOA=120⁰.

⇒ ∠BOA=∠COD [ Vertically opposite angle ]

∴ ∠COD=120⁰

Similar questions