In a rectangle ABCD, prove that :
AC² + BD² = AB² + BC² + CD² + DA²
Answers
Answered by
32
To Prove:
AC² + BD² = AB² + BC² + CD² + DA²
Given:
A rectangle ABCD
Solution:
apply the formula of pythagorus theorem
in ∆ABC,
➙ AC² = AB² + BC²⠀......(1)
In ∆BAD,
➙ BD² = AB² + AD²⠀......(2)
Adding (1) and (2)
➙ AC² + BD² = AB² + BC² + BC² + DC²
Since,the given figure is rectangle,
⠀⠀⠀⠀⠀⠀➙ BC = AD
⠀⠀⠀⠀⠀⠀➙ BC² = AD²
Therefore,
AC² +BD² = AB² + BC² + BC² + DC²
➙ AB² + BC² + CD² + DA²
Thus,
LHS = RHS
Hence,
the given expression is proved.
Attachments:
Similar questions