in a rectangle abcd, the diagonals intersect at o. if angle oab=30, find angles a)acb b) abo c)cod d)boc
Answers
Answer:
We know that opposite sides of rectangle is equal or parallel.
a) ad is parallel to bc -
ac is transversal line .
then , angle ACB = 30°
b). in triangle abo,
angle oab = 30°
and angle aob = 90°
hence ,
oab + aob + abo =180° ( angle sum property)
- 90° + 30° + abo = 180°
- 120° + abo = 180°
- abo = 180 - 120 = 60 °
- abo = 60°
c). cod = 90 ° ( because angle meet at 90° )
d). boc = 90° also..
l hope it's helpful for all of you
if yes plz mark it
In △ABC,
⇒ ∠CAB+∠ABC+∠ACB=180⁰.
⇒ 30⁰ +90⁰+∠ACB=180⁰.
⇒ 120⁰ +∠ACB=180⁰.
∴ ∠ACB=60⁰
We know that, diagonals of rectangle are equal and bisect each other equally.
∴ AO=OC=BO=OD
In △ABO,
⇒ AO=BO
⇒ ∠OAB=∠ABO [ Angle opposite to equal side are also equal ]
⇒ ∠OAB=∠ABO=30⁰
⇒ ∠OAB+∠ABO+∠BOA=180 ⁰
⇒ 30⁰+30⁰+∠BOA=180⁰.
⇒ ∠BOA=120⁰.
⇒ ∠BOA=∠COD [ Vertically opposite angle ]
∴ ∠COD=120⁰
⇒ ∠COD+∠BOC=180⁰ [ Linear pair ]
⇒ 120⁰+∠BOC=180⁰
∴ ∠BOC=60⁰.