Math, asked by mohammedhaneefphoto, 5 months ago

in a rectangle triangle ABC right at B, AB = 7 cm , BC = 24 cm. then length of AC is. 30 cm. 17 cm. 25cm. 19cm​

Answers

Answered by SarcasticL0ve
4

Given:

  • AB = 7 cm
  • BC = 24 cm

⠀⠀⠀⠀⠀⠀⠀

To find:

  • Length of AC = ?

⠀⠀⠀⠀⠀⠀⠀

Solution:

\setlength{\unitlength}{1.2cm}\begin{picture}(6,5)\linethickness{.4mm}\put(1,1){\line(1,0){4.5}}\put(1,1){\line(0,1){3.5}}\qbezier(1,4.5)(1,4.5)(5.5,1)\put(0,2.5){\large\bf 7 cm}\put(2.8,.3){\large\bf 24 cm}\put(1.02,1.02){\framebox(0.3,0.3)}\put(.7,4.8){\large\bf A}\put(.8,0.5){\large\bf B}\put(5.8,0.5){\large\bf C}\end{picture}

⠀⠀⠀⠀⠀⠀⠀

\sf Given \begin{cases} & \sf{Perpendicular,\;AB = 7\;cm }  \\ & \sf{Base\;BC = 24\;cm }  \end{cases}\\ \\

\bigstar\;{\underline{\sf{Using\; Pythagoras\; Theorem\;in\; \triangle\;ABC\;:}}}\\ \\

\star\;{\boxed{\sf{\purple{(Hypotenuse)^2 = (Base)^2 + (Perpendicular)^2}}}}\\ \\

:\implies\sf (AC)^2 = (BC)^2 + (AB)^2\\ \\

:\implies\sf (AC)^2 = (24)^2 + (7)^2\\ \\

:\implies\sf (AC)^2 = 576 + 49\\ \\

:\implies\sf (AC)^2 = 625\\ \\

:\implies\sf \sqrt{(AC)^2} = \sqrt{625}\\ \\

:\implies{\boxed{\sf{\pink{AC = 25\;cm}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Hence,\; length\;of\;AC\;is\; \bf{25\;cm}.}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━

\qquad\qquad\boxed{\underline{\underline{\bigstar \: \bf\:More\:to\:know\:\bigstar}}} \\  \\

  • Pythagoras theorem states that the sum of the squares of the lengths of the legs of a right triangle is equal to the square of the length of the hypotenuse.

  • (Hypotenuse)² = (Base)² + (Perpendicular)²
Answered by Anonymous
3

Correct Question-:

  • In a rectangle ️ △ABC is a right angled triangle and the right angle is at B, AB = 7 cm , BC = 24 cm. then the length of AC is
  1. 30 cm
  2. 17 cm
  3. 25 cm
  4. 19 cm

AnswEr -:

  • \boxed{\sf{\blue{The\:option\:3 \:is  \: correct. }}}
  • \boxed{\sf{\blue{The\:length\:of \:AC\:is  = 25\: cm }}}

Given ,

  • △ABC is a right angled triangle.
  • The right angle is at B .
  • AB = 7 cm
  • BC = 24 cm

To Find ,

  • The length of AC .

☆ Using Pythagoras theorem in ️ △ ABC

\boxed{\sf{\purple{ Hypotenuse² = Base² + Perpendicular²}}}

\sf{\Rightarrow{\pink{AC² = BC² + AB²}}}

\sf{\Rightarrow{\pink{AC² = 24² + 7²}}}

\sf{\Rightarrow{\pink{AC² = 576 + 49 }}}

\sf{\Rightarrow{\pink{AC² = 625 }}}

\sf{\Rightarrow{\pink{AC = \sqrt 625 }}}

\sf{\Rightarrow{\pink{AC = 25 cm }}}

Therefore ,

\boxed{\sf{\blue{The\:length\:of \:AC\:is  = 25\: cm }}}

Hence ,

\boxed{\sf{\blue{The\:option\:3 \:is  \: correct. }}}

________________________________________

☆ Let's Explore ....................

  • Pythagoras Theorem states that in a Right angled triangle ️ the square of the Hypotenuse side is equal to the sum of the square of other two sides of Right angled triangle.

  • \boxed{\sf{\pink{ Hypotenuse² = Base² + Perpendicular²}}}

Similar questions