In a region uniform E.F & M.F are at along X-axis. A charge
particle Q is projected towards the y direction with velocity
v. Then find time in which K.E of particle become twice.
Answers
Answer:
Sign in
Contents
Home
Bookshelves
University Physics
Book: University Physics (OpenStax)
Book: University Physics II - Thermodynamics, Electricity, and Magnetism (OpenStax)
11: Magnetic Forces and Fields
Expand/collapse global location
11.4: Motion of a Charged Particle in a Magnetic Field
Last updatedNov 6, 2020
11.3: Magnetic Fields and Lines
11.5: Magnetic Force on a Current-Carrying Conductor
picture_as_pdf
Readability
Cite this page
Donate

Contributed by OpenStax
General Physics at OpenStax CNX
Learning Objectives
By the end of this section, you will be able to:
Explain how a charged particle in an external magnetic field undergoes circular motion
Describe how to determine the radius of the circular motion of a charged particle in a magnetic field
A charged particle experiences a force when moving through a magnetic field. What happens if this field is uniform over the motion of the charged particle? What path does the particle follow? In this section, we discuss the circular motion of the charged particle as well as other motion that results from a charged particle entering a magnetic field.
The simplest case occurs when a charged particle moves perpendicular to a uniform B-field (Figure 11.4.111.4.1). If the field is in a vacuum, the magnetic field is the dominant factor determining the motion. Since the
magnetic force
is perpendicular to the direction of travel, a charged particle follows a curved path in a magnetic field. The particle continues to follow this curved path until it forms a complete circle. Another way to look at this is that the
magnetic force
is always perpendicular to velocity, so that it does no work on the charged particle. The particle’s kinetic energy and speed thus remain constant. The direction of motion is affected but not the speed.