Math, asked by soha391, 10 months ago

In a regular polygon each interior angle is 140 degrees greater than each exterior angle. Find the number of sides

Answers

Answered by jaishrikrishna1234
44

Answer:

Each interior angle of a regular polygon = 140 deg. So each exterior angle of the regular polygon = 180-140 = 40 deg. Hence the regular polygon has 360/40 = 9 sides.

Answered by Anonymous
78

\sf\red{\underline{\underline{Answer:}}}

\sf{The \ number \ of \ sides \ is \ 18.}

\sf\orange{Given:}

\sf{\implies{In \ a \ regular \ polygon \ each \ interior}}

\sf{angle \ is \ 140° \ greater \ than \ each \ exterior \ angle.}

\sf\pink{To \ find:}

\sf{The \ number \ of \ side \ of \ the \ polygon.}

\sf\green{\underline{\underline{Solution:}}}

\sf{Let \ the \ exterior \ angle \ of \ polygon \ be \ x.}

\sf{\therefore{Interior \ angle=x+140}}

\sf{According \ to \ the \ linear \ pair \ axiom}

\sf{x+(x+140)=180}

\sf{\therefore{2x+140=180}}

\sf{\therefore{2x=180-140}}

\sf{\therefore{2x=40}}

\sf{\therefore{x=\frac{40}{2}}}

\boxex{\sf{\therefore{x=20}}}

\sf{\therefore{All \ exterior \ angle=20°}}

\sf{Number \ of \ sides=\frac{360}{Exterior \ angle}}

\sf{\therefore{Number \ of \ sides=\frac{360}{20}}}

\sf{\therefore{Number \ of \ sides=18}}

\sf\purple{\tt{\therefore{The \ number \ of \ sides \ is \ 18.}}}

Similar questions